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Abstract

In the era of genetic engineering, cloning and genome sequencing the focus of research 
on the genetic code has received an even further accentuation in the public eye. When 
however aspiring to understand intra- and intercellular recognition processes compre-
hensively, the two biochemical dimensions established by nucleic acids and proteins are 
not sufficient to satisfactorily explain all molecular events in e.g. cell adhesion or routing. 
To bridge this gap consideration of further code systems is essential. A third biochemical 
alphabet forming code words with an information storage capacity second to no other 
substance class in rather small units (words, sentences) is established by monosaccha-
rides (letters). As hardware oligosaccharides surpass peptides by more than seven 
orders of magnitude in the theoretical ability to build isomers, when the total of conceiv-
able hexamers is calculated. Beyond the sequence complexity application of NMR spec-
troscopy and molecular modeling have been instrumental to discover that even small 
glycans can often reside in not only one but several distinct low-energy conformations 
(keys). Intriguingly, conformers can display notably different capacities to fit snugly into 
the binding site of non-homologous receptors (locks). This process, experimentally veri-
fied for two classes of lectins, is termed „differential conformer selection“. It adds potential 
for shifts of the conformer equilibrium to modulate ligand properties dynamically and 
reversibly to the well-known changes of sequence (including anomeric positioning and 
linkage points) and of pattern of substitution, for example by sulfation. In the intimate 
interplay with sugar receptors (lectins, enzymes and antibodies) the message of coding 
units of the sugar code is deciphered. This communication will trigger post-binding signal-
ing and the intended biological response. Knowledge about the driving forces for the 
molecular rendezvous, i.e. contributions of bidentate or cooperative hydrogen bonds, dis-
persion forces, stacking and solvent rearrangement, will enable the design of high-affinity 
ligands or mimetics thereof. They embody clinical applications reaching from receptor 
localization in diagnostic pathology to cell-type-selective targeting of drugs and inhibition 
of undesired cell adhesion in bacterial/viral infections, inflammation or metastasis.

Key words: drug design / glycoconjugate / lectin / molecular modeling / protein-carbohy-
drate interaction

Basic biochemical knowledge assigns nucleic acids and proteins the decisive role in 
information flow in biosystems. Connected by the genetic code the transcribed portions of 
the genome govern the expression of a complex set of messages on the level of polypep-
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tides. To meet the requirement of flexible regulation of product availability the synthesis 
and degradation of proteins can be intimately modulated. Moreover, post-translational 
modifications, phosphorylation taking a prominent place in textbooks, assure rapid and 
reversible fine-tuning of enzyme and receptor activities. With genome sequencing 
becoming routine daily practice the allurement to view biological information as being 
exclusively epitomized by the genetic code becomes nearly irresistible. To be mindful of 
substance classes, which would otherwise be unfairly and incorrectly treated as „second 
class citizens“ [von der Lieth et al., 1997b], this review furnishes information to under-
score that the current judgment to place primary emphasis in research on the genetic 
code is unlikely to be final. After introducing first the concept of the sugar code on the 
level of sequence and conformation and then documenting presence of sophisticated 
decoding devices (among them endogenous lectins) the versatility of the sugar code will 
be exemplified leading to the description of perspectives to turn these discoveries into 
biomedical applications.

The Sugar Code: Basic Principles

In order to succeed as hardware for information transfer any substance class must offer 
the potential for specific coding. The message will have to be deciphered with sufficient 
biochemical affinity and low probability for ambiguities and misinterpretation. A high-den-
sity coding capacity is beneficial to keep the size of the active sections of biomolecules 
small, thereby reducing the energetic expenses during synthesis. Moreover, spatially 
easy accessibility and the potential for rapid structural modulations by reversible varia-
tions of the chain length and/or introduction of small but decisive substituents are emi-
nent factors in the design of an efficient code system. This set of conditions describes the 
frame in which the quality of biological coding is to be rated. By performing such calcula-
tions on the theoretical storage capacity expressed as the total number of isomers with-
out preconceptions it takes no effort of persuasion to convincingly show that nucleotides 
and amino acids are surpassed by far by another class of biomolecules.

Currently, carbohydrates have their main place in textbooks in chapters on energy 
metabolism and cell wall composition. The regular repetitive arrangement of monosac-
charides in plant, insect, fungal or bacterial cell walls or coats seduces to underestimate 
the other inherent talents of carbohydrates. Amazingly, they are readily discernible when 
closely looking at a simple structural representation (Fig. 1). Each monosaccharide offers 
various hydroxyl groups for oligomer formation by glycosidic bonds including the ano-
meric C1-position. In contrast to nucleic acids and proteins branching of chains is a com-
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mon feature of the glycan part of cellular glycoconjugates (glycoproteins, glycolipids). 
Taking stock of the peculiarities of monosaccharide structure the total number of isomer 
permutation for a hexamer with an alphabet of 20 letters (monosaccharides) reaches the 
staggering number of 1.44 x 1015 [Laine, 1997]. Under the same conditions only 6.4 x 
107 (206) structures can be devised from 20 amino acids, the four nucleotides just yield-
ing 4096 (46) hexanucleotides. Allowing two different substitutions in a hexasaccharide, 
occurring in nature e.g. as sulfation in glycosaminoglycan chains, further increases the 
number of isomers by more than two orders of magnitude [Laine, 1997]. In the prophetic 
words of Winterburn and Phelps „carbohydrates are ideal for generating compact units 
with explicit informational properties, since the permutations on linkages are larger than 
can be achieved by amino acids, and, uniquely in biological polymers, branching is possi-
ble“ [Winterburn and Phelps, 1972].

It is no treading on thin ice to follow the authors to their conclusion that „the significance 
of the glycosyl residues is to impart a discrete recognitional role on the protein“ [Winter-
burn and Phelps, 1972], and it is not surprising that at least 1.0% of the translated 
genome in animals is devoted to the generation of code words with as many as 70% of 
proteins harboring the tripeptide sequon for N-glycosylation [Reuter and Gabius, 1999; 
Varki and Marth, 1995; Wormald and Dwek, 1999]. The core region and complex exten-
sions of this ubiquitous type of protein glycosylation in eukaryotes are shown in Fig. 2. It 
gives a graphic example how branching sets in and how to read the sugar code. Each 
linkage is characterized by the anomeric configuration and the positions of the two link-
age points, such as β1-4 as opposed to α1-4 or α1-3. Since nucleotide sugars are 
employed as donors by the glycosyltransferases [Brockhausen and Schachter, 1997; 
Sears and Wong, 1998], chain growth generally involves the anomeric position restricting 
the range of products by enzymatic synthesis in relation to all theoretically possible iso-
mers. Nonetheless, the presented staggering complexity of glycan structures has already 
placed severe obstacles in the way to go beyond merely acknowledging the enormous 
potential for structural variability towards precise structure determination. 

These problems have mainly been solved by the development of sophisticated isolation 
and analysis methods combining the power of liquid chromatography, capillary zone elec-
trophoresis, mass spectrometry, and NMR spectrometry with that of biochemical 
reagents such as endo- and exoglycosidases and sugar receptors [Cummings, 1997; 
Geyer and Geyer, 1998; Hounsell, 1997; Reuter and Gabius, 1999]. Application of these 
techniques has revealed that subtle variations and modifications are especially frequent 
in the terminal, spatially accessible sections of the sugar antennae. The strategic place-
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ment of distinctive substitutions is expected for a role in information transfer. They are 
marked by introduction of small substituents (sulfate and O-acetyl groups etc.) into sugar 
moieties such as N-acetylgalactosamine or N-acetylneuraminic acid, comparable to the 
formation of an umlaut in the German language, or by directing a synthetic intermediate 
to various end products by mutually exclusive refinements, e.g. α1-3 fucosylation, α2-3/6 
sialylation and 4-sulfation [Hooper et al., 1997; Reuter and Gabius, 1996, 1999; Reutter 
et al., 1997; Sharon and Lis, 1997; Varki, 1996]. Intercellular and temporal flexibility turns 
the available letter repertoire into an array of alternative structures (biosignals). Indeed, 
the observations that the profile of glycans is not genetically strictly coded but influenced 
by the presence and relative positioning of the set of enzymes in the assembly line and 
the actual availability of activated substrates such as nucleotide donors argues in favor of 
purpose vs. randomness [Abeijon et al., 1997; Pavelka, 1997; Varki, 1998]. Thus, the pre-
requisite for rapid and multifarious modulation mentioned in the introductory paragraph is 
adequately fulfilled in the sugar code.

In view of the assumed importance for maintaining diversity a multicellular organism with 
lack of presence of one of the mentioned pathways will allow to probe into the question 
whether this deficit is accompanied by any remodeling in the overall glycosylation system 
or not. Assisted by genome sequencing, it can indeed be proposed that absence of sialy-
lation in the nematode Caenorhabditis elegans might be compensated by elaboration of 
another part of the enzymatic machinery. The discovery of 18 different genes for putative 
fucosyltransferases in the genome of this nematode argues in favor of this notion [Oriol et 
al., 1999]. In these authors’ own words, „for some unknown reasons, these nematodes 
have favored through evolution fucosylation instead of sialylation of their terminal non-
reducing oligosaccharide epitopes or glycotopes and since sialic acid and fucose are 
usually in competition for the same acceptors, the lack of all forms of sialic acid in C. ele-
gans fits well with a large expression of different fucosyltransferase genes, making this 
animal an ideal model for evolutionary studies of fucosyltransferases“ [Oriol et al., 1999]. 
All these reactions in glycosylation result in a typical pattern of glycan chains on the level 
of cells and organs. It is as characteristic as a fingerprint or a signature. Yeast cells for 
example produce mannose-rich surface glycans, while multicellular organisms promi-
nently put histo-blood group epitope-rich complex-type glycans on display. Enzymes for 
these extensions at the end of antennae (Fig. 2) typically reside in the medial- and trans-
Golgi regions. Since the number of activities operating upon these sections has espe-
cially expanded in the animal kingdom, it is rather unreasonable to assume these refine-
ments to have survived fortuitously. Driving this evolutionary process can be attributed to 
functions of the glycans ranging from purely physical aspects such as solubility or protec-
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tion of surface against proteolytic attack to any involvement in recognition [Drickamer and 
Taylor, 1998; Gagneux and Varki, 1999; Reuter and Gabius, 1999; Sharon and Lis, 1997; 
Varki, 1996] .

A principal comment is warranted on the surmised evolutionary mechanisms of selection 
of letters for the alphabet of this code system. As insightfully discussed by Hirabayashi 
[1996], elementary hexose synthesis under prebiotic conditions was most probably facili-
tated by the following cascade. It started with formol condensation, yielding basic trioses 
known from glycolysis. The next step is the aldol condensation to 3,4-trans-ketoses and a 
conversion of D-fructose to D-glucose and D-mannose via an enediol-intermediate and 
the keto-enol tautomerism (Lobry de Bruyn rearrangement). Notably, D-glucose harbors 
no 1,3-diaxial interactions involving a hydroxyl group (Fig. 1), and the favored „tridymite“ 
water structure is maintained in the presence of equatorial hydroxyl groups [Uedaira and 
Uedaira, 1985]. In mannose as in galactose, a biochemical derivative obtained by the 
NAD+-dependent epimerization of glucose, only one hydroxyl group is axial, keeping 
unfavorable 1,3-diaxial interactions and perturbation of solvent structure minimal. In con-
trast to the 2’- and 4’-epimers the 3’-epimer has three 1,3-axial interactions. Origin from 
synthesis under prebiotic conditions and energetic consequences entail the organization 
of the initial hardware of the sugar code. From them, further letters of the alphabet com-
prising also the N-acetyl derivatives of the 2’-amines of glucose and galactose, L-fucose, 
D-xylose and N-acetylneuraminic acid are biosynthetically produced. Interestingly, the 
core section of N-glycans (Fig. 2) is composed of basic units derived from a presumably 
prebiotic origin. This fact invites to speculate on a relationship of evolutionary pathways 
on the levels of eukaryotic organisms and of glycan complexity. Setting this aspect which 
is further discussed elsewhere [Drickamer and Taylor, 1998; Gagneux and Varki, 1999; 
Hirabayashi, 1996; Oriol et al., 1999] aside in this context, it can at least be reliably con-
cluded at this stage that oligosaccharides by their inherent potential for ample sequence 
permutations including variations in the anomeric position and the linkage groups for a 
glycosidic bond deserve attention as coding units. Remarkably, recent work extends the 
capacity for information storage from two dimensions of linear and branched oligosac-
charide chains to the third dimension.

The Sugar Code: The Third Dimension

The shape of a glycan will be determined by the conformation of the furanose/pyranose 
rings and the relative positioning of the rings in the chain. Based on X-ray crystallogra-
phy, neutron diffraction and homonuclear coupling constant data the 4C1 chair conformer 
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(1C4 for L-sugars) is the energetically preferred pyranose ring structure [Abeygunaward-
ana and Bush, 1993; Brown and Levy, 1965]. In rare cases, for example for L-iduronic 
acid as constituent of heparan and dermatan sulfates, and to accommodate mechanical 
stress, conformational flexibility and elasticity of a pyranose can be generated by chair-
boat transitions, which allow L-iduronic acid to acquire the skew-boat form 2S0 [Casu et 
al., 1988; Marszalek et al., 1998]. Yet the main contribution to define a glycan’s shape will 
generally originate not from this source. In contrast, it will arise from changes of the two 
dihedral angles φ and ψ of each glycosidic bond (Fig. 3). By letting the thumbs of each 
hand touch, independent variations of these two parameters by movements of the hands 
can swiftly be visualized. Since the pyranose rings linked by the glycosidic bond and their 
exocyclic substituents are rather bulky, their size will impose topological restraints to the 
intramolecular movements of the oligomer. Compared to oligopeptides with small side 
chains, the conformational space accessible to the molecule at room temperature will 
thus be relatively restricted. That this spatial factor limits the range of interchangeable 
conformations has been inferred by computer-assisted molecular mechanics and dynam-
ics calculations and convincingly documented by experimental evidence primarily from 
sophisticated NMR-spectroscopy [Bush et al., 1999; Imberty, 1997; Siebert et al., 1999; 
von der Lieth et al., 1997a, 1998; Woods, 1998]. Exploring the actual position(s) of each 
oligosaccharide on the scale between high flexibility with an ensemble of conformers and 
almost complete rigidity will definitely have salient implications to predict its role as cod-
ing unit. In this respect, it is also worth pointing out that a notable level of intramolecular 
flexibility is not a favorable factor for crystallization. Indeed, such an extent of unre-
strained conformational entropy can contribute to explain the frequently frustrating expe-
rience in respective attempts in carbohydrate chemistry. If on the other hand the level of 
conformational entropy is confined to only very few stable conformers (keys), the pre-
sented shape distribution is not only a function of the sequence but also of external fac-
tors affecting the actual status of the equilibrium. In this context it should not escape 
notice that environmental parameters with impact on presentation of the glycan in glyco-
conjugates might shift the dynamic equilibrium of shape interconversions between attain-
able positions without requirement to alter the primary structure. Sugar receptors as 
probes for distinguishing bioactive or bioinert glycan presentation modes on proteins 
have already given the hypothesis experimental credit [Mann and Waterman, 1998; 
Noorman et al., 1998; Solís et al., 1987; White et al., 1997]. This support brings to view 
an attractive means to modify shape which warrants to contrive further appropriate exper-
iments to underpin its actual operation beyond any doubt.

As implied by referring to a code system, information stored as sequence and shape will 
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have to be grasped. Translating and transmitting it into intended responses is the task of 
decoding devices. They should specifically recognize coding units established by gly-
cans. Thus, in addition to physicochemically serving roles to control folding, oligomeriza-
tion and access of proteolytic enzymes, as already mentioned [Drickamer and Taylor, 
1998; Gagneux and Varki, 1999; Reuter and Gabius, 1999; Sharon and Lis, 1997; Varki, 
1996], oligosaccharides in glycan chains can be likened to the postal code in an address 
to convey distinct messages read by suitable receptors. These carbohydrate-binding pro-
teins are classified into enzymes responsible to assemble, modify and degrade sugar 
structures, immunoglobulins homing in on carbohydrates as antigens, and, last but not 
least, lectins. Evidently, the third class encompasses all carbohydrate-binding proteins, 
which are neither antibodies nor are they enzymes which couple ligand recognition with 
catalytic activity to process the target [Barondes, 1988; Gabius, 1994]. That lectin/glycan 
recognition has been assigned pivotal duties in an organism can at best be rendered per-
ceptible by aberrations causing diseases. Knowledge accrued from the study of the bio-
chemical basis of human diseases (for example mucolipidosis II or leukocyte adhesion 
deficiency (LAD) type II syndrome) underscores how trafficking of lysosomal enzymes or 
leukocytes can go awry owing to a lack of generation of the essential carbohydrate signal 
[Brockhausen et al., 1998; Lee and Lee, 1996; Paulson, 1996; Reuter and Gabius, 1999; 
Schachter, 1999; von Figura, 1990].

Lectins: Translators of the Sugar Code

The concept of a recognitive interplay between a sugar ligand and a lectin readily 
receives support, when the assumed ligand properties can be ascertained. As compiled 
in Table 1, various experimental approaches exploit the lectin’s binding specificity in 
assays for their detection and characterization. The success in establishing these tech-
niques and the power of affinity chromatography together with expression cloning and 
homology searches have spurred the transition from the early phase to categorize lectins 
according to their monosaccharide specificity and requirement for cations to the era to 
draw genealogical trees of lectin families. Having its roots in the structural definition of the 
folding pattern and architecture of the carbohydrate recognition domain, the classification 
scheme is currently agreed upon with five distinct families of animal lectins, i.e. C-type 
lectins, galectins, I-type lectin, P-type lectins and pentraxins [Drickamer, 1988, 1993; 
Gabius, 1997a; Powell and Varki, 1995; Rini and Lobsanov, 1999]. That this compilation 
is unlikely to be final is implied by the description of lectin sequences lacking invariant 
characteristics of any of the five classes (for example the chaperones calnexin and cal-
reticulin mentioned in Table 2) and the detection of new folding arrangements (for exam-
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ple the five-bladed β-propeller in the invertebrate lectin tachylectin-2 [Beisel et al., 1999]).

In each lectin family sequence alignments and homology searches have so far been con-
ducive to unravel the divergent pathway from an ancestral gene to the current diversity. 
The intrafamily genealogy of mammalian C-type lectins has elegantly been traced back in 
a dendrogram to common ancestors for the seven subfamilies [Drickamer, 1993]. To illus-
trate that such domains, often a part of modular arrangements, are no rare peculiarity in 
animal genomes, it is telling to add that a current data base lists 389 C-type lectin-like 
sequences in animals [Sonnhammer et al., 1998]. Yeast lacks this module in its domain 
collection. In the nematode Caenorhabditis elegans, whose elaborate enzymatic system 
for fucosylation has already been referred to [Oriol et al., 1999], this domain is ranked on 
the seventh place in frequency of occurrence, excelling for example the abundance of the 
EGF-like motif [The C. elegans Sequencing Consortium, 1998]. At present, 183 C-type 
lectin-like domains have been traced in 125 proteins [Drickamer and Dodd, 1999]. How-
ever, it is presently unclear how many of these proteins will be actually operative in Ca2+-
dependent sugar (or peptide) binding  [Drickamer, 1999]. Also, at least eight functional 
galectin genes and a tentative total of 28 candidate galectin genes among the approxi-
mately 20,000 genetic reading frames (current number predicted: 19,099) in its genome 
were identified in the nematode [Cooper and Barondes, 1999; Hirabayashi et al., 1997]. 
These new insights into lectin abundance further increase the percentage of the coding 
genome devoted to glycan production and recognition. 

Equaling the strides being taken in the structural research on lectins, elucidation of their 
in vivo significance has steadily moved forward in the last decade. Summarized in Table 
2, our present status of knowledge bears witness to the versatility to ply glycan recogni-
tion for a variety of purposes. In addition to mediating a physical contact between mole-
cules and cells their initial recognition can trigger post-binding signaling with impact for 
example on growth regulation [Villalobo and Gabius, 1998]. With focus on the 
homodimeric galectin-1 its mediation of down-regulation of cell growth of responsive 
human neuroblastoma cells and of T-cell apoptosis to alleviate collagen-induced arthritis 
depicts representative examples with potential clinical relevance [Kopitz et al., 1998; 
Rabinovich et al., 1999]. Albeit necessarily centered in basic science, such cases illus-
trate the conceivable future potential to turn an endogenous lectin into a pharmaceutical. 

Having already moved closer to applied science, the participation of lectins and glycocon-
jugates in cell adhesion has prompted attempts to rationally interfere with the molecular 
rendezvous, conceptually visualized as anti-adhesion therapy in Fig. 4. This approach 
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mimics the natural strategy for success achieved with the complex cocktail of milk glyco-
conjugates. They are protective by blocking docking of pathogens such as enteropatho-
genic and -hemorrhagic E. coli, Campylobacter jejuni or rotavirus [Newburg, 1999]. 
Although realization of this approach can prove tedious, because the pattern of recogni-
tion pairs is often not restricted to very few lectins (Helicobacter pylori with at least ten dif-
ferent carbohydrate-binding activities compared to the single type of influenza sialidase 
whose inhibition will noticeably affect virus propagation [Karlsson, 1999; Lingwood, 1998; 
von Itzstein and Thomson, 1997]), the custom-made design of tools, drawn as symbols in 
the strategy-outlining Fig. 4, justifies efforts to first localize binding partners and then to 
interfere with their activity aimed at therapy. 

Notably, the first method can be used independently, e.g. in diagnostic procedures to 
characterize cell features. The visualization of carbohydrate-specific activities is com-
monly performed with carrier-immobilized sugar structures. Covalent attachment of a 
suitable derivative furnishes the versatility to produce neoglycoconjugates tailored to the 
experimental requirements [Bovin and Gabius, 1995; Lee YC and Lee, 1994]. Compared 
to a single carbohydrate unit the affinity of the multivalent ligand „is often beyond that 
expected from the increase in sugar concentration due to the presence of multiple resi-
dues on the protein (or polymeric backbone). Such an affinity enhancement is termed the 
glycoside cluster effect“ [Lee RT and Lee, 1994]. The geometrical increase in affinity with 
a numerical increase in valence for mono-, bi-, and trivalent Gal-terminated oligosaccha-
rides and mammalian asialoglycoprotein receptor, a C-type lectin, has been attributed to 
the topological complementarity between multiple ligand and receptor sites [Lee and Lee, 
1997]. Membrane solubilization by detergent treatment will in this case disrupt the essen-
tial spatial  arrangement. An important caveat for approaches to detect the cluster effect 
concerns the use of agglutination assays. In contrast to affinity measurements in direct 
binding assays, the ongoing aggregation of multivalent receptors and ligands in solution 
can lead to erroneous conclusions. Indeed, under these circumstances isothermal titra-
tion calorimetry failed to record enhancements of Gibbs’ free energy of binding but mea-
sured an endothermic, entropically favored process, its extent correlating with the 
inhibitory potency (IC50-values) of tetra- and hexavalent ligands [Dimick et al., 1999]. 

Adding a label to the neoglycoconjugates renders them serviceable for detection of 
ligand-specific sites in cells and tissues, as listed in Table 1 with special practical empha-
sis being currently placed in tumor diagnosis [Danguy et al., 1998; Gabius et al., 1995, 
1998; Kayser and Gabius, 1999]. In view of common lectin histochemistry with plant 
agglutinins, this method has been designated as „reverse lectin histochemistry“ [Gabius 
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et al., 1993]. Following the description of a relevant clinical correlation, e.g. binding of 
histo-blood group A- and H-trisaccharides to lung cancer cells and survival of patients 
[Kayser et al., 1994], further work will aim to define the tissue target and to refine the 
ligand for optimal selectivity and specificity [Mammen et al., 1998] en route to running 
assays to unveil, if possible, therapeutic benefit in lectin-directed anti-adhesion therapy 
[see references given in legend for Fig. 4] and drug targeting [Gabius, 1989, 1997b]. To 
attain this objective, it is indispensable to comprehend the how and why of protein-carbo-
hydrate recognition. Thus, it is inostructive to proceed with a brief outline of these princi-
ples relevant for drug design.

Principles of Protein-Carbohydrate Recognition

Basically, typical contributions to the Gibbs’ free energy of ligand binding originate from 
hydrogen bonding, van der Waals forces and the consequences of the hydrophobic 
effect. Factors to be reckoned with to predict the affinity of a ligand further include any 
alterations of the geometry and motional dynamics of the receptor and/or the ligand and/
or the solvent molecules. As experimentally readily accessible parameters by calorimetric 
techniques, the determination of the reaction enthalpy and entropy delineates the global 
driving force towards complex formation. These parameters have for example been mea-
sured for an array of mono- and disaccharides in the cases of a plant and an animal lectin 
sharing specificity to D-galactose [Bharadwaj et al., 1999], and the plot of the data (Fig. 
5) according to the equation:

- ∆H = - ∆G - T∆S
reveals a slope near unity and intercepts of -16.45 kJ/mol (plant lectin) and -23.12 kJ/mol 
(animal lectin). 

This figure conveys a fundamental message on the relation between enthalpic and 
entropic factors attributed to the participation of weak intermolecular forces. An increase 
in enthalpy for ligand binding is inherently balanced by an entropic penalty (or vice 
versa), an obvious example of common enthalpy-entropy compensation [Dunitz, 1995; 
Gilli et al., 1994; Lumry and Rajender, 1970]. Its illustration automatically poses an ambi-
tious question. The major challenge is to assign events on the level of the molecules in 
the course of association to the global enthalpic and entropic factors to bridge the gap 
between the demand for rules to optimize shape recognition and the thermodynamics. 
With this knowledge at hand, it might be feasible to intentionally shift the specificity and 
selectivity of derivatives. As the controversial discussion on the positive or negative role 
of water molecules for the enthalpy of complexation illuminates [Gabius, 1998; García-
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Hernández and Hernández-Arana, 1999; Lemieux, 1996; Toone, 1994], it will be essen-
tial to scrutinize the behavior of each participant of the molecular rendezvous in detail. 
Consequently, quick complete answers should not be expected but stepwise advances 
by the combination of computer-assisted calculations, spectroscopic techniques in solu-
tion, chemical tinkering with the ligand structure towards potent mimetics and X-ray crys-
tallography. An impression into the practical implementation of this interdisciplinary 
approach is given in the next paragraph.

How to Define Potent Ligand Mimetics

Taking the meaning of the word „carbohydrate“ (C (H2O)n) literally, the abundant display 
of hydroxyl groups with their sp3-hybridized oxygen atoms acting as acceptors with two 
lone electron pairs and the protons as donors nourishes the view that hydrogen bonds 
will dominate the spectrum of binding forces. When the spacing between two hydroxyl 
groups or the axial 4’-hydroxyl group and the ring oxygen atom matches that of an amino 
acid side chain (amide or carboxylate), two neighboring sites on the ligand can well be 
engaged in bidentate hydrogen bonds. The necessity for topological complementarity to 
yield the intricate network, schematically shown in Fig. 6, may not only be a source for 
enthalpy but also for selectivity, distinguishing anomers such D-Gal vs D-Man/D-Glc. It 
can thus be expected that the axial 4’-position for recognition of D-Gal and the equatorial 
3’,4’-positions for binding D-Man/D-Glc play decisive roles. This assumption is strikingly 
verified by X-ray crystallography and in solution by chemically engineered ligand deriva-
tives [Gabius, 1997a, 1998; Lis and Sharon, 1998; Loris et al., 1998; Rini, 1995; Rüdiger 
et al., 1999; Solís and Díaz-Mauriño, 1997; Solís et al., 1996; Weis and Drickamer, 1996]. 
With this structural explanation it becomes obvious why the change of the position of one 
hydroxyl group to form an epimer discussed during the presentation of the individual 
members of the monosaccharide alphabet unmistakably has the effect of creating a new 
letter. By the way, the same principle holds also true for the characteristic formation of 
two coordination bonds with the central Ca2+-ion in the mentioned C-type lectins. 
Thereby, any wrong combination for the two adjacent hydroxyl groups involved in con-
tacting the metal ion is excluded and sugar specificity is assured, unless the access-
restricting impediment by a constraining loop close to the metal ion is lifted [Gabius, 
1997a; Lis and Sharon, 1998; Loukas et al., 1999; Weis and Drickamer, 1996].

Inspecting Fig. 6 more closely, another important feature to drive ligand binding can be 
discovered. While the upper side of D-Gal is rather polar, the B-face exhibits a hydropho-
bic character. Stacking to the bulky aromatic amino acid side chain in the binding pocket 
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removes both non-polar surfaces from solvent accessibility, although the two rings may 
not be perfectly aligned in parallel. In fact, their positioning can tolerate distortions with 
angles between 17° and 52° in lectins [Weis and Drickamer, 1996]. Nonetheless, this 
alignment will still contribute to complex stability and also to ligand selection despite its 
lower degree of directionality relative to hydrogen bonds [Quiocho, 1988; Vyas, 1991]. 
The ensuing shielding of the indolyl side chain by the ligand is reflected for galectins in 
molecular dynamics calculations as well as differential UV, fluorescence, and laser photo 
CIDNP (chemically induced dynamic nuclear polarization) spectra [Levi and Teichberg, 
1981; Siebert et al., 1997]. Beyond this impact on solvent molecules by reducing the apo-
lar surface area the π-electron cloud of the aromatic ring is likely to interact with the ali-
phatic D-Gal protons which harbor a net positive charge [Dougherty, 1996; Nishio et al., 
1995; Weis and Drickamer, 1996]. That the ensuing hydrophobic effect and van der 
Waals interactions do not deserve to be underestimated for impinging on the overall 
Gibb’s free energy gain is underscored by the analysis of dominant forces in tight ligand 
binding for a variety of cases, where these factors can even surpass by far the contribu-
tion of hydrogen bonds [Davis and Teague, 1999; Kuntz et al., 1999]. 

This observation illustrates the complexity of the question how to account for the global 
enthalpic and entropic parameters on the level of molecules. For that galectin, whose 
data set from isothermal titration calorimetry is given in Fig. 5, it has recently been 
described by crystallographical work that six structural water molecules occupy the bind-
ing site in the ligand-free state stabilizing its topology and yielding a not yet precisely 
quantitated contribution to the Gibbs’ free energy change upon displacement [Varela et 
al., 1999]. In the case of a related galectin from the conger eel one additional water mole-
cule even takes place of D-Gal’s B-face substituting stacking by forming a π-electron 
hydrogen bond with a distance of 3.36 Å and an angle of 6.5° between the vector of the 
weight center of the five-membered section of the indole ring to the water molecule and 
the vector perpendicular to the ring plane [Shirai et al., 1999]. The total exchange of the 
water molecules with the ligand will not only directly affect these solvent molecules but 
may also have a bearing on the proteins’ intramolecular motions in solution. Remarkably, 
also the impact of ligand binding on protein flexibility is to be reckoned with. An increase 
in its vibrational entropy (14.6 kJ/mol for binding of one water molecule to bovine pancre-
atic trypsin inhibitor as model [Fischer and Verma, 1999]) can offset a substantial portion 
of the entropic penalty of the immobilization. The extent of this factor will certainly depend 
on the inherent mobility dynamics of the carbohydrate ligand free in solution. This param-
eter has already been inferred above to be often restricted due to spatial interference of 
the rather bulky rings and substituents. Graphically drawing on E. Fischer’s classical 
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„lock and key“ paradigm [Fischer, 1894], the metaphor has tentatively been introduced for 
this ligand type to view certain oligosaccharides as „bunch of keys“ moving in solution 
through a limited set of shapes [Hardy, 1997]. Only one of them may be selected by a 
receptor.

With a digalactoside (Galβ1-2Gal) as model, the formation of two „keys“ from the same 
sequence is displayed in Fig. 7. Based on the φ, ψ, E-plot, shown in its left section, molec-
ular dynamics calculations and nuclear Overhauser effect (NOE) NMR-spectroscopy 
[Siebert et al., 1996, 1999; von der Lieth et al., 1998], two distinct conformations are 
present in solution, each molecule rapidly fluctuating between these two topological con-
stellations (Fig. 7, right side). Due to the inability to acquire spectroscopic snapshots with 
a resolution in the ps range, spectroscopical monitoring will be subject of time and 
ensemble averaging [Carver, 1991; Jardetzky, 1980]. Since the term „key“ implies its 
accurate fit into an appropriate lock, monitoring of transferred NOE signals, reflecting 
through-space dipolar interactions between two protons in the bound ligand in double-
resonance experiments, will resolve the gripping question as to which ligand topology will 
be accommodated in the binding pocket [Gabius, 1998; Jiménez-Barbero et al., 1999; 
Peters and Pinto, 1996; Poveda and Jiménez-Barbero, 1998; Rüdiger et al., 1999; von 
der Lieth et al., 1998]. 

These experiments provide two captivating answers for the studied case of lectins. 
Firstly, a lectin can actually select a distinct conformer, as seen for galactoside-binding 
lectins and selectins [Asensio et al., 1999; Espinosa et al., 1996; Gilleron et al., 1998; 
Harris et al., 1999; Poppe et al., 1997; Siebert et al., 1996; von der Lieth et al., 1998]. 
Despite the same sequence the shape of other conformers renders them unsuitable for 
binding. Of course, a wrong key will not open a non-adaptable (rigid) lock designed for a 
different shape. Secondly, different receptors even with the same saccharide specificity 
harbor the capacity to bind different conformers. Thus, freezing a distinct conformation 
should have a dramatic impact on receptor binding as alluded to above. This principle is 
referred to as „differential conformer selection“. It is visualized in Fig. 7 by noting that the 
conformer defined by the upper φ, ψ-combination is exclusively bound by a plant (mistle-
toe) agglutinin, while the tested galectin homes in on the second conformer [Gabius, 
1998; Gilleron et al., 1998; Siebert et al., 1996; von der Lieth et al., 1998]. Thus, not only 
the hydrogen-bonding patterns of these lectins toward D-Gal differ, as delineated by 
chemical mapping with deoxy and fluoro derivatives [Lee et al., 1992; Rüdiger et al., 
1999; Solís et al., 1996], but also the pair of φ, ψ-torsion angles of β-Gal-terminated dis-
accharides. Because the importance of the intramolecular flexibility of the free ligand and 
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conformer selection is only gradually explored as factor to be rationally manipulated, this 
result together with insights into favorable energetic interactions between the binding 
partners including solvent molecules warrants consideration for the design of mimetics. 
Thereby, they can eventually meet the high expectations for potency expressed in Fig. 4. 
When the geometry of crucial groups is maintained or even improved, the obtained sub-
stances do not even need to belong to the class of carbohydrates. To grant adequate 
heed to mimetics is probably a means to open a wide field for rational drug design, cur-
rently for example exploited for the influenza A/B neuraminidase and selectins [Sears 
and Wong, 1999; Simanek et al., 1998; von Itzstein and Thomson, 1997]. As caveats to 
caution against prematurely advocating clinical effectiveness of anti-adhesion therapy in 
inflammation or of sugar-based drugs in epidemic flu, detrimental long-term effects in an 
animal model mimicking both acute and chronic intestinal inflammation has been 
reported [McCafferty et al., 1999]. Similarly, stress has been laid upon the necessity to 
prove clinical benefit for an elegantly invented but costly anti-flu drug in terms of an obvi-
ous impact on mortality beyond that of common, less expensive medications including 
vaccination [Cox and Hughes, 1999; Institut für Arzneimittelinformation (eds), 1999; 
Yamey, 1999].

Conclusions

Elucidation of the structural basis of the genetic code and its translation into peptide 
sequences with milestones set by J.D. Watson and F. Crick (1953) and M. W. Nirenberg 
and J. H. Matthei (1961) has paved the way for medical applications more than three 
decades after the pioneering work in basic science. Today, nearly 20 % of the new drugs 
tested in final phases are based on the technology of genetic engineering, up from 12 % 
last year. To fathom the intricacy of the sugar code and transfer this knowledge on how 
sugar words are formed and these messages are decoded by receptors to applied sci-
ence should therefore not be anticipated to be a matter of only a few years. The versatility 
of exploiting oligosaccharides as carriers of biological information presented by nature 
should first be thoroughly unraveled. Building this solid basis of experimental data will 
most likely entail to be able to venture into newly defined areas of glycan functionality and 
then to launch further projects of interdisciplinary research leading from basic to applied 
science. In view of the current focus on genomics the presented evidence and reasoning 
offer well grounded arguments to shake the conviction that as source for understanding 
of recognitive and regulatory processes in normal and disease states fruitful work will 
solely be confined to handling the data bank of the human genome.
[Gabius, 1997a; Gabius and Gabius, 1993; 1997; Kaltner and Stierstorfer, 1998; Kishore 



16

et al., 1997; Vasta et al., 1999; Zanetta, 1998]

[Cornejo et al., 1997; Gabius, 1997a; Gabius, 1997b; Gabius and Gabius, 1997; Karls-
son, 1998; Simon, 1996; Zopf and Roth, 1996]
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Table 1. Methods used in the search for lectins

Tools Parameter

multivalent glycans and (neo)glyco- carbohydrate-dependent inhibition of 
conjugates or defined cell populations lectin-mediated glycan precipitation or

cell agglutination

labelled (neo)glycoconjugates and

- matrix-immobilized extract signal intensity
fractions or purified proteins

- cell populations labeling intensity
- tissue sections staining intensity
- animal biodistribution of signal inten-

sity 

(neo)glycoconjugate-drug chimera cellular responses (cell viability etc.)
and cell populations

matrix-immobilized (neo)glycoconju-
gates and

- cell populations carbohydrate-inhibitable
cell adhesion

- cell extracts carbohydrate-elutable proteins

homology searches with

- computer programs (e.g. Gene- homology score in sequence
finder or Blast), expressed alignment or knowledge-based
sequence tags and knowledge modeling
of key structural aspects of  carbo-
hydrate recognition domains

- lectin motif-reactive probe extent of cross-reactivity
(antibody, primer sets)

from [Gabius, 1997a] with modifications
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Table 2. Functions of animal lectins

Activity Example of Lectin

ligand-selective molecular chaperones calnexin, calreticulin
in endoplasmic reticulum 

intracellular routing of glycoproteins ERGIC-53, VIP-36, P-type lectins,
and vesicles comitin

intracellular transport and non-integrin 67 kDa elastin/laminin-
extracellular assembly binding protein

cell type-specific endocytosis hepatic asialoglycoprotein receptor,
macrophage C-type lectins, hepatic 
endothelial cell receptor for GalNAc-
4-SO4-bearing glycoproteins

recognition of foreign glycans CR3 (CD11b/CD18), Limulus coagula-
(β1,3-glucans, LPS) tion factors C and G

recognition of foreign or aberrant collectins, C-type macrophage receptors,
glycosignatures on cells pentraxins (CRP, limulin), L-ficolin, 
(incl. endocytosis or initiation of tachylectins
opsonization or complement activation)

targeting of enzymatic activity in acrosin, Limulus coagulation factor C
multimodular proteins

bridging of molecules homodimeric and tandem-repeat
galectins, cytokines (e.g. IL-2:IL-2R and
CD3 of TCR), cerebellar soluble lectin

effector release (H2O2, cytokines etc.) galectins, selectins, CD23

cell growth control and apoptosis galectins, C-type lectins, amphoterin-
like protein, cerebellar soluble lectin

cell routing selectins, I-type lectins, galectins
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cell-cell interactions selectins and other C-type lectins,
galectins, I-type lectins

cell-matrix interactions galectins, heparin- and hyaluronic 
acid-binding lectins

matrix network assembly proteoglycan core proteins (C-type CRD),
galectins, non-integrin 67 kDa elastin/
laminin-binding protein

for further information, see [Gabius, 1997a; Gabius and Gabius, 1993, 1997; Kaltner and 
Stierstorfer, 1998; Kishore et al., 1997; Vasta et al., 1999; Zanetta, 1998] for recent 
reviews


