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Abstract

The posttranslational modification with ubiquitin, a process referred
to as ubiquitylation, controls almost every process in cells. Ubiquitin
can be attached to substrate proteins as a single moiety or in the form
of polymeric chains in which successive ubiquitin molecules are con-
nected through specific isopeptide bonds. Reminiscent of a code, the
various ubiquitin modifications adopt distinct conformations and lead
to different outcomes in cells. Here, we discuss the structure, assembly,
and function of this ubiquitin code.
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1. INTRODUCTION

When in 1532 Spanish conquistadores set
foot on the Inca Empire, they found a highly
organized society that did not utilize a system
of writing. Instead, the Incas recorded tax
payments or mythology with quipus, devices
in which pieces of thread were connected
through specific knots. Although the quipus
have not been fully deciphered, it is thought
that the knots between threads encode most
of the quipus’ content. Intriguingly, cells use a
regulatory mechanism—ubiquitylation—that
is reminiscent of quipus: During this reaction,
proteins are modified with polymeric chains in
which the linkage between ubiquitin molecules
encodes information about the substrate’s fate
in the cell.

Ubiquitylation is brought about by
ubiquitin-activating enzymes (E1s), ubiquitin-
conjugating enzymes (E2s), and ubiquitin
ligase enzymes (E3s) (1–3). These enzymes
first catalyze the formation of an isopeptide
bond between the C terminus of ubiquitin and
usually a substrate lysine, leading to monoubiq-
uitylation (Figure 1a). Monoubiquitylation
can occur at a defined residue, such as Lys164
in proliferating cell nuclear antigen (PCNA)
(4), or it might be confined to a domain,
as in the transcription factor p53 (5). It is
possible that multiple lysine residues become
modified with one ubiquitin each during
multimonoubiquitylation (Figure 1b), with
the epidermal growth factor receptor (EGFR)
as an example (6).

Modification of the N terminus or one of the
seven lysine residues of a substrate-attached
ubiquitin leads to formation of polymeric
chains. These chains can be short and contain
only two ubiquitin molecules or long and
incorporate more than ten moieties. Ubiquitin
chains are homogenous if the same residue is
modified during elongation, as in Met1- (or
linear), Lys11-, Lys48-, or Lys63-linked chains
(Figure 1c). Chains have mixed topology
if different linkages alternate at succeeding
positions of the chain (Figure 1d ), as seen in
NF-κB signaling or protein trafficking (7–10).
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E2: ubiquitin-
conjugating enzyme

E3: ubiquitin ligase
enzyme

UBD: ubiquitin-
binding domain

Homologous to
E6AP C terminus
(HECT):
a class of E3s ubiquitin
ligases

If a single ubiquitin is modified with multiple
molecules, branched chains of unknown
function are generated (Figure 1e).

All possible linkages have been detected in
cells (11, 12). For chains linked through Lys6,
Lys27, Lys29, or Lys33, few substrates are
known, and their significance is poorly under-
stood. However, it has been well established
that monoubiquitylation and four homogenous
chain types trigger distinct outcomes in the cell,
suggesting that ubiquitylation can act as a code
to store and transmit information. In this re-
view, we discuss the structure, assembly, and
function of this ubiquitin code.

2. STRUCTURE OF THE
UBIQUITIN CODE

2.1. Ubiquitin

Ubiquitin is a highly stable protein that adopts a
compact β-grasp fold with a flexible six-residue
C-terminal tail (Figure 2a) (13). Most of its
core residues are rigid, but the β1/β2 loop con-
taining Leu8 shows flexibility that is important
for recognition by ubiquitin-binding proteins
(Figure 2b) (14). With three conservative
changes, ubiquitin is almost invariant from
yeast to man. This suggests high evolutionary
pressure to conserve the structure of ubiquitin
and implies that many of its surfaces are recog-
nized by ubiquitin-binding domains (UBDs).

Ubiquitin is often recognized through a hy-
drophobic surface that consists of Ile44, Leu8,
Val70, and His68 (Figure 2a–c) (15). The Ile44
patch is bound by the proteasome and most
UBDs, rendering it essential for cell division
(15–17). Another hydrophobic surface is cen-
tered on Ile36 and involves Leu71 and Leu73
of the ubiquitin tail (Figure 2c). The Ile36
patch can mediate interactions between ubiq-
uitin molecules in chains, and it is recognized
by HECT E3s (18), DUBs (19), and UBDs (20).
A surface comprising Gln2, Phe4, and Thr12 is
required for cell division in yeast (Figure 2c)
(17). This Phe4 patch might function in traf-
ficking (17), and it interacts with the UBAN
domain (21) and the ubiquitin-specific protease

Substrate Substrate

Substrate

Substrate

Monoubiquitylation Multimonoubiquitylation

Homogeneous
ubiquitin chain

Mixed
ubiquitin chain

Branched
ubiquitin chain

Unanchored
ubiquitin chain

a b

c d

e f

Substrate

Unanchored
ubiquitin chain

Unanchored

S

oubiquitylation

S

Mixed

Substrate

omogeneous

Substrateb

63

63

63

48

48

48

63

11
48

Figure 1
The different topologies of ubiquitylation. (a) Monoubiquitylation.
(b) Multimonoubiquitylation. (c) Homogenous ubiquitin chain. (d ) Mixed
ubiquitin chain. (e) Branched ubiquitin chain. ( f ) Unanchored ubiquitin chain.

(USP) domain of DUBs (19). The divergence
between Phe4 patches of ubiquitin and its clos-
est homolog Nedd8 enables DUBs to distin-
guish between these modifiers (22). In higher
eukaryotes, the TEK-box of ubiquitin, a three-
dimensional motif that includes Thr12, Thr14,
Glu34, Lys6, and Lys11, is required for mitotic
degradation (Figure 2c) (23). As deamidation of
Gln40 by the bacterial protein Cif blocks chain
assembly (24), additional surfaces might fulfill
as yet unidentified functions.

With respect to the ubiquitin code, the
most important features of ubiquitin are its N
terminus and its seven lysines, which are the
attachment sites for chain assembly. These
residues cover all surfaces of ubiquitin and point
into distinct directions (Figure 2d ). Lys6 and
Lys11 are located in the most dynamic region
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Figure 2
Structural features of ubiquitin. (a) Structure of ubiquitin, indicating the C-terminal (C term) tail and
residues of the Ile44 patch [Protein Data Bank (pdb) code 1ubq] (13). (b) NMR ensemble of ubiquitin on the
basis of residual dipolar couplings (14). The first 30 structures of the ensemble (pdb 2k39) are shown. The
Ile44 residues are indicated, and the flexible region is highlighted. (c) The ubiquitin surface is shown with
Ile44 (blue), Ile36 ( green), Phe4 patches (cyan), and TEK-box (white) highlighted. (d ) Structure of ubiquitin
showing the seven Lys residues and Met1. Blue spheres indicate amino groups used in ubiquitin chain
formation. Abbreviation: N term, N terminus.

Deubiquitinating
enzyme or
deubiquitinase
(DUB): an enzyme
that cleaves the
isopeptide bond
between a lysine and
the C terminus of
ubiquitin

of ubiquitin that may undergo conformational
changes in the context of a chain or upon asso-
ciation with UBDs. As Lys27 is buried, linkage
assembly through this residue would require
localized changes in ubiquitin structure.

2.2. Ubiquitin Chain Structure

Structural characterization of five chain types
revealed that different linkages result in dis-
tinct chain conformations. Ubiquitin chains

adopt either “compact” conformations, where
adjacent moieties interact with each other, or
“open” conformations, where no interfaces are
present except for the linkage site. The canoni-
cal Lys48-linked chains adopt compact confor-
mations (Figure 3a) (25–28). In the prevalent
model for Lys48-linked diubiquitin, the ubiq-
uitin moieties interact via their Ile44 patches
(25–27), and two such diubiquitin modules pack
tightly in tetraubiquitin (28). NMR analysis us-
ing residual dipolar couplings has identified a
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Distal ubiquitin: last
ubiquitin moiety in a
chain without a
modified lysine

minor population of Lys48-linked diubiquitin
in which the Ile36 patch of the distal ubiquitin
interacts with the Ile44 patch of the proximal
unit (27, 29). This structural flexibility might
give binding partners of Lys48-linked chains
access to the Ile44 patch, a hot spot for ubiquitin
recognition.

Similar to Lys48 linkages, Lys6- and Lys11-
linked chains adopt compact conformations,
with Lys11-linked chains also displaying
structural flexibility (Figure 3b,c) (30–32). In
one structure of Lys11-linked diubiquitin (30),
an asymmetric interface covering the α-helix of
ubiquitin is involved, and in another study, the
ubiquitin moieties interact symmetrically via
Ile36 patches (31). Both conformations are con-
sistent with NMR analysis, suggesting that they
coexist in equilibrium (30). Indeed, an analysis
of crystal packing revealed a higher-order
assembly of Lys11-linked chains that encom-
passes both conformations (33). In all Lys11-
linked chain models, the Ile44 patch is solvent
exposed and ready to interact with binding
partners.

In contrast to the aforementioned link-
ages, Met1- and Lys63-linked chains mostly
display open conformations (Figure 3d,e), as
shown by NMR analysis of Lys63-linked ubiq-
uitin (26, 34) and crystal structures of both
chain types (35–37). Reminiscent of beads on a
string, the extended open conformation endows
Lys63 and Met1 linkages with high conforma-
tional freedom. Most binding partners of these
chains, therefore, likely exploit the distance and
flexibility between chain moieties, rather than
recognizing a defined geometric assembly of
different ubiquitin surfaces (38).

Together, the various structures revealed a
large array of geometries that can be utilized by
binding partners to distinguish between mod-
ifications. As described below, linkage-specific
binding proteins might recognize the distance
between chain entities or sense the relative
orientation of ubiquitin surfaces at successive
chain positions. The conformational flexibil-
ity of some chain types raises the possibility
that UBDs remodel chains to increase inter-
action interfaces or improve specificity. The

HOW TO DISSECT THE UBIQUITIN CODE

Ubiquitin modifications can be analyzed by a plethora of
approaches. Reconstitution of cellular pathways in extracts
supplemented with ubiquitin mutants revealed the roles of
Lys11-linked chains in mitotic degradation (23) and Lys63-
linked chains in kinase activation (60, 97). The biochemical and
structural analysis of enzymes led researchers to discover Met1-
linked chains as regulators of NF-κB signaling (21, 82). In cells,
monoubiquitylation is often studied by analyzing linear fusions
between ubiquitin and the candidate substrate (141). To dissect
roles of chains in vivo, recombinant ubiquitin mutants can be
injected into cells or Xenopus embryos (23). Mutant ubiquitin can
also be overexpressed in cells, which, owing to the tight regulation
of endogenous ubiquitin levels, leads only to a modest excess of
mutant ubiquitin and often results in weak phenotypes. In a more
careful approach, the genes encoding ubiquitin and ubiquitin-
ribosome fusions are deleted or their mRNAs depleted by siRNA,
and mutant ubiquitin is expressed as a ribosomal fusion (161,
179). The abundance of ubiquitin chain types can be analyzed
with antibodies that specifically detect Met1, Lys11, Lys48, or
Lys63 linkages (31, 82, 90) or by quantitative proteomics (11, 12,
55, 128). In all cases, assigning a function to a ubiquitin modifi-
cation requires a combination of these experimental approaches.

structural diversity of the various modifications,
therefore, forms the foundation of the ubiquitin
code.

3. WRITING THE
UBIQUITIN CODE

Any functional code requires its specific
assembly—just as review articles make sense
only if letters are arranged in a sequence that
gives meaning to the resulting words. In a sim-
ilar manner, ubiquitylation will trigger specific
outcomes only if the responsible enzymes cat-
alyze formation of largely the same product
each time they act on their substrate.

3.1. Monoubiquitylation

The enzymes catalyzing monoubiquity-
lation have to recognize substrate lysine
residues, while sparing those of ubiquitin
from modification, a specificity that can be
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a   Lys48 diUb

d   Lys63 diUb

c   Lys6 diUb

b   Lys11 diUb
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Really interesting
new gene (RING):
a class of E3 enzymes

Chain initiation:
modification of a
substrate lysine residue
with the first ubiquitin

determined by the E2, the E3, or a particular
substrate-E3 complex.

In an example of the latter approach,
the polycomb E3 ligase complex Bmi1-
RING1 monoubiquitylates histone H2A on
Lys119 (39), even though it collaborates with
Ube2D/UbcH5, a nonspecific E2 that usually
modifies multiple substrate and ubiquitin ly-
sine residues (40). Bmi1-RING1 binds to both
DNA and nucleosomes, which results in a stiff
substrate-E3 complex that exposes the active
site of Ube2D toward Lys119 of H2A. Owing
to the rigidity of this assembly, ubiquitylation of
Lys119 introduces a steric impediment to fur-
ther modification, thereby restricting the reac-
tion to monoubiquitylation.

Alternatively, E3 enzymes can block the
ability of E2s to catalyze chain formation, as
seen with Rad18 and its E2 Rad6. Although
Rad6 can synthesize mixed or Lys48-linked
chains (41, 42), it promotes monoubiquityla-
tion of PCNA when collaborating with Rad18
(4, 43). Similar to other E2s, Rad6 depends on
a noncovalent ubiquitin-binding site for chain
formation; Rad18 occupies this site, thereby
blocking chain formation without interfering
with monoubiquitylation (41).

In some cases, the E2 determines
monoubiquitylation, yet the molecular
basis for this specificity is poorly understood.
For example, the E2s Ube2W and Ube2T,
together with the E3 FANCL, decorate the
DNA repair protein FANCD2 with a single
ubiquitin (44, 45). Ube2W also catalyzes
monoubiquitylation with other E3s, such as
Brca1-Bard1 and CHIP (46, 47). If these
E3s utilize the nonspecific Ube2D instead of
Ube2W, substrates are modified with ubiquitin
chains, showing that in this case it is the E2,

Ube2W, that encodes the information for
monoubiquitylation.

3.2. Ubiquitin Chain Assembly
by RING Domain and U-Box
Ligase Enzymes

The enzymes that catalyze chain formation
face a different specificity issue: They need
to modify specific lysine residues of ubiqui-
tin. For E3s containing a RING or U-box
domain, this linkage specificity is likely de-
termined by the E2 (3). This hypothesis is
supported by the observation that RING or
U-box E3s can synthesize different chain types
depending on the E2: Brca1-Bard1 or Murf,
for example, assembles Lys63 linkages with
the heterodimeric E2 enzyme Ube2N-Uev1A,
but Lys48 linkages when bound to Ube2K (46,
48). Similarly, CHIP synthesizes Lys63-linked
chains with Ube2N-Uev1A but is unspecific
with Ube2D (49). Conversely, RING E3s that
interact with a single E2 generally display the
specificity of this E2: Multi-subunit E3 ligases
of the SCF family decorate substrates with
Lys48-linked chains by using the Lys48-specific
E2 Ube2R1 (50); gp78, a regulator of endo-
plasmic reticulum–associated degradation,
assembles Lys48-linked chains with the Lys48-
specific E2 Ube2G2 (51); and the anaphase
promoting complex (APC/C) produces Lys11-
linked chains using the Lys11-specific Ube2S
(52).

RING E3s and their E2s initiate chain
formation on a substrate lysine (Figure 4a),
which can occur at random positions or in
preferred sequence environments, referred to
as chain initiation motifs (53). The initiating
E2s often assemble short chains, which can

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Ubiquitin chain structure. Diubiquitin (diUb) molecules of different linkages are shown with the distal (dist) molecule in yellow and the
proximal (prox) molecule in orange, alongside a schematic representation. Ile44 (blue) and Ile36 ( green) patches are indicated.
(a) Lys48-linked diUb, Protein Data Bank (pdb) code 1aar (left) (25), pdb 2pe9 (right) (185). The tetramer model (tetraUb) is based on
data in Reference 28. (b) Lys11-linked diubiquitin, pdb 2xew (left) (30), pdb 3nob (right) (31). The model of Lys11-linked octaubiquitin
(octaUb) is based on crystal packing of both structures (33). (c) Lys6-linked diubiquitin, pdb 2xk5 (32). (d ) Lys63-linked polyubiquitin,
pdb 2jf5 (35). The model of a longer chain is based on Reference 186. (e) Met1-linked polyubiquitin, pdb 2w9n (35).
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be connected nonspecifically as for Ube2D
(54); contain a favored linkage, as seen for the
Lys11-preferring Ube2C (23, 55); or are ho-
mogenous, as for Lys48-specific Ube2R1 (50).
In most cases, the initiating E2s cooperate with

a specific chain-elongating E2 (Figure 4b).
This allows for assembly of Lys11-linked
chains by Ube2S (52, 56), Lys48-linked chains
by Ube2K/Ubc1 or Ube2R1 (46, 50, 57),
and Lys63-linked chains by Ube2N-Uev1A
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c

Ile44 hydrophobic patch 
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(46, 58). E2s with specificity for Lys6, Lys27,
Lys29, or Lys33 have not been reported (59).

Selection of the appropriate lysine used
for chain formation requires recognition of a
specific acceptor ubiquitin surface by the E2
donor ubiquitin complex. The Lys63-specific
Ube2N achieves this feat by teaming up with
an auxiliary subunit, Uev1A (Figure 4c) (60).
Uev1A contains a UBC-E2 variant domain
that has lost its catalytic cysteine but has re-
tained its capacity to noncovalently bind ubiq-
uitin (58). This interaction orients the acceptor
ubiquitin such that Lys63 faces the active site
of charged Ube2N. By contrast, monomeric
E2s directly recognize the acceptor ubiquitin.
Ube2S, for example, binds the TEK-box of
ubiquitin through a surface close to its active
site (Figure 4d ) (61). A similar interaction is re-
quired for Lys11 linkage formation by Ube2C
(23) and Ube2D (62), suggesting that the TEK-
box is of broad importance for Lys11 link-
age formation. The Lys48-specific E2s, Cdc34,
Ubc1, or Ube2G2, employ an acidic loop or
residues close to their active site for acceptor
recognition, yet the corresponding ubiquitin
surface is not well defined (50, 51, 57, 63).

In most cases, the acceptor ubiquitin is
bound with very low affinity: Even Ubc13-
Mms2 binds acceptor ubiquitin with a Km of
only 437 μM (64). Such low affinities suggest
that additional mechanisms contribute to the
linkage specificity of E2s. Previous work with
the SUMO-E2 Ube2I/Ubc9 identified an as-
partate of the E2 that deprotonates the acceptor

lysine, thereby turning it into an efficient nucle-
ophile (65). An acidic residue is also required
in ubiquitin E2s that show activity toward ly-
sine, while it is not required for activity to-
ward cysteine, as the thiol group does not need
to be deprotonated at physiological pH (66).
Importantly, the Lys11-specific Ube2S lacks an
acidic residue in its active site and, instead, uti-
lizes the Glu34 of the acceptor ubiquitin for
Lys11 activation (Figure 4d ) (61). Other ly-
sine residues of ubiquitin are not paired up
with properly oriented acidic residues, explain-
ing why Ube2S does not modify them with high
efficiency. As the Lys48-specific yeast Ubc1 re-
quires Tyr59 of ubiquitin for linkage formation,
similar mechanisms of substrate-assisted catal-
ysis might also contribute to formation of other
chain types (57).

3.3. Chain Formation by HECT E3s

A different class of enzymes, the HECT E3s,
contain a catalytic cysteine (67). E2s charge this
cysteine with ubiquitin before this ubiquitin
is used for modification. HECT E3s display
a wide range of linkage specificities: Yeast
Rsp5 and human Nedd4 assemble Lys63-
linked chains (68, 69); E6AP (E6-associated
protein) synthesizes Lys48 linkages (68, 70);
KIAA10/UBE3C promotes formation of
Lys29 and Lys48 linkages (70); a bacterial
HECT-like E3 triggers assembly of Lys6- and
Lys48 linkages (71); and HUWE1 appears to
be nonspecific (68).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4
Mechanism of linkage-specific ubiquitin (Ub) chain assembly by E2s. (a) Ubiquitin chain formation proceeds through an initiation step,
during which a substrate lysine residue is modified, and elongation, during which ubiquitin molecules are added to the growing chain.
(b) Proposed mechanism of RING E3-catalyzed ubiquitin transfer from a charged E2 to a substrate or ubiquitin lysine. ∼Ub indicates a
covalent ubiquitin thioester intermediate. (c) Heterodimeric Ubc13-Mms2 recognizes acceptor ubiquitin through the UBC-variant
domain of Mms2. This positions the acceptor Lys63 to the active site of charged Ubc13. (d ) Monomeric Ube2S catalyzes linkage
formation through substrate-assisted catalysis. Ube2S recognizes the TEK-box of acceptor ubiquitin. Activation of the acceptor Lys11
requires a ubiquitin residue, Glu34. Thus, the correct surface of the acceptor ubiquitin, which includes Lys11 and Glu34, must be
exposed to the catalytic cysteine of charged Ube2S in order for the active site to be completed and for linkage formation to occur.
(e) Mechanism of HECT ubiquitin chain formation. The E2 charges a cysteine in the HECT domain C-terminal (HECT-C) lobe
forming a HECT-ubiquitin thioester. The HECT domain presumably positions the acceptor for linkage-specific chain assembly.
( f ) Mechanism of RING-in-between-RING (RBR) ubiquitin chain formation. The RING domain binds to and discharges the E2 to a
cysteine in the C-terminal RING-like domain. Abbreviations: HECT-N, HECT N-terminal lobe; IBR, in-between-RING.
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The catalytic domain of HECT E3s con-
sists of an N-terminal lobe, which binds the
E2, and a C-terminal lobe, which contains the
active-site cysteine (Figure 4e) (72, 73). As
the acceptor lysine attacks the thioester be-
tween the cysteine of the E3 and ubiquitin,
linkage specificity should be determined by the
HECT E3 and not the E2. Indeed, Rsp5 and
E6AP assemble Lys63- or Lys48-linked chains,
respectively, despite using the nonspecific E2
Ube2D; many HECT E3s promote chain for-
mation with Ube2L3/UbcH7, a thiol-reactive
E2 that does not modify lysine residues (66), and
HECT domain swaps are sufficient to change
linkage specificity despite using the same E2s
(68).

To determine linkage specificity, HECT
domains must orient and activate the acceptor
lysine. Indeed, Rsp5, Smurf2, and Nedd4
engage in noncovalent interactions with an
acceptor ubiquitin through residues of their
N-terminal lobe (69, 74, 75). KIAA10 binds
to acceptor ubiquitin through sequences that
are N-terminal to the HECT domain (70),
and E6AP requires both E2 and ubiquitin sur-
faces for acceptor recognition (70). However,
although this acceptor binding turned out to
be required for processive chain formation, it
does not determine linkage specificity (69, 74).
Thus, how HECT domains synthesize chains of
defined topologies remains poorly understood.

3.4. Chain Formation by
RING-In-Between-RING E3
Ubiquitin Ligases

A distinct set of E3s contains a sequence of
a RING, a RING-in-between-RING (RBR),
and a RING-like domain. These RBR E3s are
RING/HECT hybrids: They utilize the RING
domain to recruit an E2, which transfers ubiq-
uitin to a cysteine in the RING-like domain, to
form a thioester intermediate (Figure 4f ) (66).
RBR E3s display linkage specificity: The linear
ubiquitin chain assembly complex (LUBAC)
assembles Met1-linked chains (8, 76–78), and
parkin catalyzes monoubiquitylation as well
as Lys63-, Lys48-, and Lys27-linked chain

formation (79, 80). As RBR E3s function with
Ube2L3, an E2 without reactivity against lysine
(66), linkage specificity of chain formation
must be determined by the E3, and not the
E2. Consistent with this notion, RBR E3s can
synthesize chains that differ from the inherent
specificity of a cooperating E2: Whereas
Ube2K usually assembles Lys48-linked chains
(81), LUBAC and Ube2K produce Met1-
linked chains (82). How RBR E3s determine
their linkage specificity, however, is not known.

4. READING THE CODE:
CONCEPTS IN UBIQUITIN
BINDING

Once the code has been written, effector pro-
teins with UBDs translate the modifications
into specific outcomes (15). Although many
UBDs have been described, their potential
for linkage-specific ubiquitin recognition has
rarely been assessed comprehensively, and
limited structural and mechanistic insight
is available. For example, a crystal structure
of Lys48-linked chains in complex with a
protein has not been reported. Fortunately,
Lys63-linked diubiquitin has been caught in
complex with UBDs, revealing several concepts
of ubiquitin recognition.

4.1. Exploiting the Distance Between
Ubiquitin Molecules

In the various chain types, the distance between
successive ubiquitin moieties can differ consid-
erably. Proteins with multiple UBDs exploit
this property by introducing a defined spacer
between the UBDs, as seen in proteins that
contain tandem repeats of ubiquitin-interacting
motifs (UIMs) (38, 83). UIMs consist of an α-
helix with a hydrophobic binding site for the
Ile44 patch of ubiquitin (84). In Rap80, a sub-
unit of the Brca1-E3, two UIMs are separated
by a seven-residue helix that positions the UIMs
to recognize extended Lys63-, but not com-
pact Lys48-, linked chains (Figure 5a) (38, 83).
Conversely, the two UIMs of Ataxin-3 are sep-
arated by a short linker of two residues, which
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Figure 5
Concepts in ubiquitin binding. Ubiquitin binding domains are shown in cyan/teal, and the ubiquitin chains appear as in Figure 3. Zinc
ions are shown as yellow spheres. (a) Crystal structure of the RAP80 tandem ubiquitin-interacting motif (tUIM) bound to Lys63-linked
diubiquitin (diUb), Protein Data Bank (pdb) code 3a1q (86). (b) Crystal structure of the TAB2 NZF domain bound to Lys63-linked
diubiquitin, pdb code 2wwz (87). (c) NMR model of the hHR23 UBA domain bound to Lys48-linked diubiquitin, pdb code 1zo6 (89).
(d ) Crystal structure of the NEMO UBAN domain bound to Met1-linked diubiquitin, pdb code 2zvn (21). (e) Crystal structure of the
Lys63-specific antibody bound to Lys63-linked diubiquitin, pdb code 3dvg (90). Only part of the Fab fragment is shown. ( f ) Crystal
structure of the A20 ZnF domain bound to three ubiquitin molecules, pdb code 3oj3 (94). ( g) Crystal structure of the Usp5/IsoT ZnF
UBP domain bound to ubiquitin, pdb code 2g45 (20). Abbreviations: dist, distal; prox, proximal.

results in preferential recognition of more com-
pact Lys48 linkages. Swapping the linkers made
Ataxin-3 Lys63 and Rap80 Lys48 selective, em-
phasizing how the length of the linker, the
“ruler,” determines binding specificity (38).

4.2. Exploiting Chain Flexibility

TAB2 and TAB3, adaptors of the TAK1
kinase complex, contain Npl4-like zinc fin-
gers (NZFs) (85). These NZF domains are
able to distinguish between structurally similar
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Proximal ubiquitin:
the ubiquitin moiety
attached to a substrate
or with a free C
terminus in
unanchored chains

Unanchored
ubiquitin chains:
ubiquitin chains that
are not attached to
substrates

Lys63- and Met1-linked chains, a specificity en-
abled by the dynamic nature of these chain types
(Figure 5b). As seen in crystal structures of
NZF domains bound to Lys63-linked diubiq-
uitin (86, 87), the Ile44 patches of each ubiqui-
tin interact with a perpendicular surface on the
same NZF domain. This “bending” of Lys63-
linked dimers displaces Met1 of the proximal
ubiquitin from the C terminus of the distal unit,
thereby preventing an equivalent binding mode
for Met1-linked chains (86, 87).

A different type of chain flexibility can be
important for recognition of compact chains,
as seen for UBA domains of proteasomal shut-
tling factors that bind Lys48-linked ubiquitin.
These UBA domains slot into a Lys48-linked
ubiquitin dimer to interact with Ile44 patches of
both ubiquitin molecules (Figure 5c) (88, 89),
an event that requires dynamic opening of com-
pact Lys48-linked chains (88, 89). Thus, similar
to NZF domains, certain UBA domains require
ubiquitin chain flexibility to allow for recogni-
tion of a particular linkage.

4.3. Recognizing the Linkage Context

The simplest way of recognizing a particular
ubiquitin modification is to directly bind the
isopeptide bond or the sequence context of
the linkage. As an example, the Lys63-linkage-
specific antibody interacts with the C terminus
of the distal ubiquitin as well as with its Ile36
patch (Figure 5e) (90). Although Lys63 on the
proximal Ub is not contacted, residues closely
preceding Lys63 mediate antibody binding. In-
terestingly, this interaction requires a compact
Lys63-linked diubiquitin in which the linkage
is accessible to the antibody (90).

The linkage context is also recognized by
the UBAN domain of NEMO, a subunit of
IκB kinase (91), which binds linear diubiquitin
(21, 35, 92). NEMO forms a symmetric dimer
that has two adjacent ubiquitin-binding sites,
with one recognizing the distal Ile44 patch and
the second binding to the proximal Phe4 patch
(Figure 5d ) (21). Although the peptide bond
between ubiquitin molecules is not directly
contacted, Gln2 of the proximal ubiquitin

makes key interactions (21). Similar interac-
tions are not accessible for the proximal unit
in Lys63-linked diubiquitin, which can only
bind the distal site with weaker affinity (93).
NEMO, therefore, illustrates how UBDs can
recognize the linkage context to distinguish
between structurally related chain topologies.

4.4. Combining Binding Sites

A single UBD can also achieve specificity
by recognizing distinct surfaces in multiple
ubiquitin molecules of a chain. This interaction
mode is illustrated by a regulator of inflamma-
tory processes, A20, which binds Lys63-linked
chains. NMR and crystallographic analysis
revealed distinct interactions between one
A20 zinc-finger domain and three ubiquitin
molecules (Figure 5f ) (94). A20 binds the
Ile44 patch, the TEK-box, and a surface sur-
rounding Asp58 of distinct ubiquitin moieties.
Although the ubiquitin molecules were not
covalently linked, all Lys63 side chains were in
proximity to an adjacent ubiquitin C-terminus,
suggesting that this structure represents a
model for the interaction of Lys63-linked
tri-ubiquitin with one A20 zinc-finger domain.

4.5. Detecting the Free C Terminus
of Unanchored Chains

Unanchored ubiquitin chains are generated
during ubiquitin biosynthesis as products of the
UBB and UBC genes (95), by DUBs that inter-
nally cleave ubiquitin chains or release entire
chains from substrates (96), or by ubiquitylation
enzymes that synthesize unanchored polymers
for signal transduction (97, 98). Unanchored
chains contain at their proximal end a free ubiq-
uitin C terminus, which is normally masked by
attachment of ubiquitin to substrates. Using
its N-terminal ZnF-UBP domain, the DUB
USP5/IsoT binds this free C terminus of
ubiquitin, including the Gly-Gly sequence,
with nanomolar affinity (Figure 5g) (20, 99).
This interaction mediates substrate binding,
converts the active site of USP5 into a cat-
alytically competent state, and allows USP5 to
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preferentially disassemble unanchored chains
from their proximal end (20, 99). Because of the
latter property, USP5 has been used to validate
the role of unanchored chains in signaling (97,
98); however, it should be noted that USP5
can act on attached chains with an activity that
is comparable to other USP enzymes (30).

5. ERASING THE CODE

Any useful code should be carefully employed
only at times of need. Indeed, to prevent ubiq-
uitylation from being constitutively on, modi-
fications are reversed by DUBs. Human cells
contain ∼55 USPs, 14 ovarian tumor DUBs
(OTUs), 10 JAMM family DUBs, 4 ubiquitin
C-terminal hydrolases (UCHs) and 4 Josephin
domain DUBs (96). To specifically control
ubiquitin-dependent signaling, these enzymes
have to deal with chains of distinct linkage,
topology, and length.

5.1. Housekeeping and
Substrate-Specific
Deubiquitinating Enzymes

Several DUBs, referred to as housekeeping
enzymes, play important roles in establishing
the ubiquitin code. For example, proteasome-
bound DUBs, such as USP14, UCH37/UCH-
L5, and RPN11/POH1, protect ubiquitin from
degradation (100). This process is vital for keep-
ing sufficient levels of free ubiquitin that can
be used for chain assembly. Similar functions
might be performed by DUBs that interact
with ubiquitin-processing complexes, such as
the COP9 signalosome (USP15) (101), or the
p97 segregase [YOD1 (102), VCIP135 (103),
Ataxin-3 (104)].

Another large group of DUBs disassembles
chains independently of the linkage, yet these
enzymes gain specificity by being targeted to
a select set of substrates. These DUBs include
most members of the USP family, which regu-
late many cellular reactions, including splicing,
protein trafficking, or chromatin remodeling.
Many USP DUBs are recruited to substrates
through interaction domains (96) or adaptor

subunits (105). Although a comprehensive
analysis has not been reported, most USPs are
active against all linkages (22, 32, 35) and also
hydrolyze the isopeptide bond between the
substrate and the first ubiquitin. An exception
from this nonspecificity is CYLD, which
prefers Met1- and Lys63-linked chains (35, 98,
106). Hence, most USPs can be considered
nonspecific with regard to the ubiquitin code
but specific with respect to their substrates.

5.2. Linkage-Specific
Deubiquitinating Enzymes

In contrast to the aforementioned examples,
several DUBs respond to the ubiquitin code
and display specificity toward one or a few
linkages. JAMM family DUBs are often Lys63
specific, as seen for AMSH (107), AMSH-
LP (108), BRCC36, and POH1 (109). In
addition, linkage-specific OTU DUBs have
been described; these descriptions showed that
OTUB1 is specific for Lys48 linkages (110,
111), Cezanne is specific for Lys11 linkages
(30), and Trabid is specific for Lys29 and Lys33
linkages (32, 112). As linkage-specific DUBs
may not be able to cleave off the last ubiquitin
(30), their activity might generate monoubiq-
uitylated substrates with distinct signaling
properties.

The structure of AMSH-LP with Lys63-
linked diubiquitin revealed the basis for the
linkage specificity displayed by JAMM family
DUBs (108). AMSH-LP binds to the open
conformation of the Lys63-linked diubiquitin
and contacts Gln62 and Glu64 of the proximal
ubiquitin. Thus, reminiscent of some UBDs,
JAMM DUBs might recognize the sequence
context of the Lys63-isopeptide bond. The
structure of Trabid revealed a different mecha-
nism to achieve specificity; this enzyme uses an
Ankyrin-repeat UBD directly upstream of the
catalytic OTU domain to position the proximal
ubiquitin (112). However, for the OTU and re-
maining DUB families, structures are available
only in complex with a single ubiquitin (19,
113–115), which revealed high-affinity binding
sites for the distal ubiquitin, while leaving the
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interaction sites for the proximal ubiquitin that
provides the modified lysine unclear. These
structures did imply, however, that compact
chain conformations should not be recognized
by DUBs unless they undergo extensive
remodeling to expose the isopeptide bond.

5.3. Ubiquitin Chain Editing

Ubiquitin chain editing is perhaps the most
sophisticated utilization of the ubiquitin code.
During this process, one chain type is replaced
by a chain of different topology, which changes
the fate of the modified substrate. Editing
could be achieved by complexes between
sequentially acting DUBs and E3s, as they are
often observed in cells (105). Alternatively,
single proteins might combine DUB and E3
activity, as seen in a pathway that regulates the
transcription factor NF-κB (116). Activation of
NF-κB relies on Lys63-specific ubiquitylation
of proteins, whereas its inactivation includes a
negative feedback loop centered on A20, a pro-
tein that combines DUB and E3 domains. It has
been proposed that A20 first deubiquitylates
Lys63-modified proteins and then modifies
them with Lys48-linked chains to trigger their
degradation. In this manner, A20 not only
stops signaling through Lys63-linked chains,
but it also removes the signal transducers
that need to be resynthesized before signaling
can resume. Although many experiments,
including linkage-specific antibodies, support
this view of A20 action (90, 94, 116), additional
layers of regulation might contribute. Indeed,
A20 prefers to cleave Lys48-linked ubiquitin
chains in vitro (117, 118), and it was shown to
interact with ubiquitin-binding adaptors, such
as TAX1BP1 (119) or ABINs (120); E3 ligases,
such as ITCH (121) and RNF11 (122); and E2
enzymes (123).

6. CELLULAR FUNCTIONS
OF THE UBIQUITIN CODE

The combinatorial action of ubiquitylat-
ing, deubiquitylating, and ubiquitin-binding

proteins determines the modified protein’s
fate; it carries the meaning of the code.
Historically, the idea of a ubiquitin code
emerged from the distinct consequences of
proteolytic Lys48-linked and nonproteolytic
Lys63-linked chains, a view that might be too
simplified: Multiple chain types, including
Lys63-linked chains, are now known to drive
degradation, whereas Lys48-linked chains can
function nonproteolytically, for example, in
transcription factor regulation (124). This
suggests that the functions of ubiquitylation
depend on chain topology, but also on other
factors, such as the timing and reversibility of
the reaction, enzyme or substrate localization,
or interactions between E3s and effectors.
Proteomic analyses found thousands of pro-
teins that act in almost all signaling pathways
to be modified with ubiquitin (125, 126). To
pay tribute to this complexity, we focus our
discussion on selected roles of ubiquitylation
that are brought about by distinct chain types
and influenced by additional cellular inputs.

6.1. Proteolytic Functions
of the Ubiquitin Code

6.1.1. Regulation of proteasomal degrada-
tion. It is well established that ubiquitin chains
can target proteins to the 26S proteasome, a
protease required for cell division in all eukary-
otes (100). Consistent with Lys48 being the
only essential lysine of ubiquitin in yeast, the
role in proteasomal targeting was first assigned
to Lys48-linked chains (127). Many E3s,
including the SCF, gp78, or E6AP, trigger
substrate turnover by synthesizing Lys48-
linked chains (50, 51, 68). As a result, Lys48
linkages are the most abundant linkage in all
organisms subjected to quantitative proteomic
analysis, and their levels increase rapidly when
the proteasome is inhibited (11, 12, 125, 128).

However, early experiments had already
indicated that other linkages could also be
recognized by the proteasome (129, 130).
These atypical linkages accumulate upon
proteasome inhibition (12), suggesting that
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they also contribute to protein degradation.
Indeed, Lys11-linked chains bind proteasomal
receptors and trigger degradation of cell cycle
regulators during mitosis (23, 31, 52). In human
cells, Lys11 linkages accumulate dramatically
upon activation of the responsible E3, the
APC/C, and inhibition of Lys11-linked chain
formation stabilizes APC/C-substrates and
leads to cell cycle arrest (23, 31). Lys11-linked
chains are, therefore, proteolytic signals that
are particularly important during mitosis.

Other chain types mediate proteasomal
degradation less frequently. Lys29-linked
chains contribute to substrate turnover in
the ubiquitin-fusion-degradation pathway
(131, 132), and in a few cases, Lys63-linked
or mixed chains were held accountable for
triggering degradation (48, 55, 133). Thus,
Lys11-, Lys29-, Lys48-, and Lys63-linked
chains might all have roles in proteasomal
degradation, a diversity in targeting signals that
is reflected by the plasticity in substrate recog-
nition by proteasomal subunits: Rpn13 binds
monoubiquitin and Lys48-linked diubiquitin
with similar affinity (134), S5a/Rpn10 interacts
with chains of multiple topologies (135), and
various proteasomal shuttling factors show
only modest preference for Lys48 compared to
Lys63 linkages (136).

Why Lys11- and Lys48-linked chains
trigger degradation more frequently than
other modifications is not entirely clear. It is
possible that enzymes synthesizing Lys11- and
Lys48-linked chains are less likely to introduce
branches, which can impede degradation
(48). In addition, Lys11- and Lys48-specific
enzymes, such as the APC/C or SCF, often
interact with the proteasome to efficiently
couple ubiquitylation and degradation (137,
138). For some E3s, binding to the protea-
some is required for sending substrates to
degradation; deletion of a proteasome-binding
domain in Ufd4 does not affect ubiquitylation,
but inhibits substrate turnover (139). It is also
possible that atypical linkages are more prone
to deubiquitylation, although our limited
understanding of DUB biology has not allowed
this hypothesis to be rigorously tested.

6.1.2. Regulation of lysosomal degrada-
tion. The degradation of plasma membrane
proteins occurs in lysosomes, and substrates
are targeted to this proteolytic compartment
through monoubiquitylation or Lys63-linked
chains (140). Ubiquitylation can be initiated
at the membrane and lead to endocytosis, as
seen for yeast membrane receptors that are sub-
strates of the HECT E3 Rsp5 (141). In such
cases, an in-frame fusion of ubiquitin to the sub-
strate is often sufficient for internalization, even
if the ubiquitylation machinery is disrupted
(142). Alternatively, ubiquitylation can occur at
endosomal membranes to control localization
after internalization. This was demonstrated
with EGFR for which mutation of all ubiq-
uitylation sites did not block endocytosis but
strongly affected its routing to lysosomes (143,
144). As a result, deubiquitylation by Usp8 or
AMSH can lead to recycling of EGFR to the
plasma membrane (145, 146).

Ubiquitylated membrane proteins are
recognized by different ESCRT complexes,
which bind ubiquitin with a modest preference
for Lys63 linkages (147, 148). In addition to
ubiquitin-binding motifs, ESCRT-complexes
recognize the coat of endocytic vesicles or
lipids of endosomal membranes (147). Thus,
the UBDs that read out the ubiquitin mod-
ification are enriched in proximity of their
substrates, suggesting that colocalization of
substrates and effectors helps determine the
consequences of a ubiquitylation event.

Although ubiquitylated protein aggregates
are also degraded in lysosomes, they pass
through autophagosomes on their route to
elimination. The aggregates are coupled to
autophagosomes by adaptor molecules, which
bind to substrates with a moderate preference
for Lys63-linked chains (149). Reminiscent
of ESCRT-complexes, autophagy receptors
are enriched in proximity to their substrates
through interactions with autophagosomal
membranes. Thus, Lys63-linked chains can
trigger proteolysis, yet efficient targeting to
lysosomes may also require additional inputs,
such as the specific localization of effector
proteins.
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6.2. Nonproteolytic Functions
of the Ubiquitin Code

Ubiquitylation is also able to regulate signaling
nonproteolytically as it can be used to recruit
proteins to participate in particular signaling
pathways, to attract trafficking factors that
change a substrate’s localization, or to control a
substrate’s activity. In most cases, the ubiquitin
conjugate is recognized with low affinity, but
the multivalent recognition of both substrate
and ubiquitin allows for tight regulation. These
nonproteolytic functions of the ubiquitin code
are often the consequence of monoubiqui-
tylation or Met1- and Lys63-linked chain
formation.

6.2.1. Regulation of protein interactions.
The attachment of a single ubiquitin often
suffices to recruit binding partners as seen for
PCNA, a processivity factor for DNA poly-
merases (4, 150). In response to DNA damage,
PCNA is monoubiquitylated (4, 151), which
recruits Y family DNA polymerases (152, 153).
These polymerases recognize PCNA through
a PCNA-interaction motif, the PIP-box, and
ubiquitin through UBZ or UBM domains,
leading to a high-affinity interaction that
replaces replicative polymerases from PCNA.
In this manner, monoubiquitylation of PCNA
contributes to a ubiquitin-dependent poly-
merase switch that rescues stalled replication
forks from collapsing. Following the successful
repair of the damaged DNA, the recruitment
signal for Y family polymerases is turned off
by Usp1-dependent deubiquitylation, allowing
the replication machinery to return to its
normal state (154). Similarly, monoubiquity-
lation of FANCD2 and FANCI, two proteins
involved in DNA repair, recruits the FAN1
nuclease, and this signaling event is also turned
off by Usp1 (155–158). Thus, monoubiquity-
lation is a tool for the reversible recruitment
of an enzyme to a particular cellular location.

Protein interactions can also be regulated
by Lys63-linked chains: The modification
of a spliceosomal protein with Lys63-linked
chains stabilizes an snRNP complex, which is

reorganized upon Usp4-dependent deubiqui-
tylation (159, 160). Similarly, modification of
a ribosomal protein with Lys63-linked chains
stabilizes polysomes to promote translation
(161). The scaffolding role of Lys63-linked
chains is most apparent during the response
that cells mount to DNA damage, an event
that is dependent on a series of E3 enzymes
(162–166). The recruitment of several E3s to
sites of DNA damage depends on Lys63-linked
chains that are probably attached to histone
proteins. The E3s Rnf8 or Rnf168 directly
recognize Lys63 linkages through MIU or
UBZ domains, whereas Brca1 depends on a
binding partner, Rap80. Together, these E3s
generate ubiquitin-rich foci that act as stable
recruitment platforms for DNA repair enzymes
and for checkpoint molecules that inhibit cell
cycle progression in the face of damage.

An interesting concept has been introduced
with unanchored Lys63-linked chains acting
as transient mediators of protein interactions
(98). Rather than being attached to a substrate,
unanchored chains function as recruitment
platforms that attract and cluster multiple
recognition factors. Because of the high activ-
ity of DUBs that recognize unanchored chains,
such as USP5, the half-life of these signaling
intermediates is likely short, and some of their
specificity might be gained by being synthesized
in proximity to their binding partners. Unan-
chored Lys63-linked ubiquitin chains mediate
the activation of TAK1 and IKK kinases and
the RIG-I antiviral protein (97, 98, 167). RIG-I
binds Lys63-linked, but not Lys48- or Met1-
linked, chains through tandem CARD domains
(97), which leads to RIG-I dimerization and
facilitates downstream signaling events (167).

Ubiquitylation can also impair interactions.
For example, monoubiquitylation of Smad4
blocks its association with the transcriptional
cofactor Smad2 (168). By deubiquitylating
Smad4, USP9X relieves the impediment for
cofactor binding and triggers transcriptional
activation. Similar results are achieved in
EGFR signaling through coupled monoubiq-
uitylation (169–171). Monoubiquitylation of
substrate adaptors of the endocytic machinery
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leads to an intramolecular interaction between
the conjugate and the adaptor’s UBD and
blocks the ability of the adaptor to recognize
its ubiquitylated cargo (170). The transcription
factor Met4 shows that such regulation does not
rely on monoubiquitylation. Met4 is modified
by SCFMet30 with Lys48-linked chains, which
bind to an internal UIM in Met4 and block its
ability to engage with coactivators (124). These
examples underscore that the topology of the
conjugate and the context of the modification
can determine the outcome of ubiquitylation.

6.2.2. Regulation of protein activity. Ubiq-
uitylation can affect a protein’s activity by dif-
ferent means. In a straightforward mechanism
of activation, an inhibitor is sent for degrada-
tion. Among many examples, the inhibitor of
the NF-κB transcription factor, IκBα, is de-
graded after modification with Lys48-linked
chains by SCFβTrCP (172, 173). The protea-
some can also activate a protein by cleaving
off inhibitory domains, as seen for proteasomal
cleavage of an NF-κB precursor (174). Similar
reactions are observed in budding yeast, where
proteasomal processing of the transcription fac-
tor SPT23 is a prerequisite for its release from
the endoplasmic reticulum membrane (175),
or in fission yeast, where activation of the
membrane-bound transcription factor SREBP
requires ubiquitin-dependent cleavage (176).
Proteasomal processing might involve atypi-
cal linkages, as cleavage of NF-κB might re-
quire multimonoubiquitylation (177), whereas
SPT23-processing is brought about by Rsp5, an
E3 that catalyzes monoubiquitylation or Lys63-
linked chain formation (175). The substrates
also have to withstand unfolding through pro-
teasomal ATPases (178), again underscoring
how the outcome of ubiquitylation can be de-
termined, at least in part, by the sequence con-
text of the modification.

Activation of NF-κB usually occurs in re-
sponse to external stimuli, such as the tumor
necrosis factor α. Binding of the tumor necrosis
factor α to its membrane receptor initiates a va-
riety of ubiquitylation events, such as formation
of Lys63-linked chains by TRAF6 (60), mixed

Lys11/Lys63-linked chains by the RING E3
ligase cIAP1 (7, 179), or Met1-linked chains by
LUBAC (82). LUBAC modifies NEMO, a sub-
unit of the IκBα kinase (IKK) complex. Intrigu-
ingly, the Met1-linked chains on NEMO are
recognized by the UBAN domain of NEMO it-
self, which may cause a conformational change
in the intertwined helices of NEMO dimers
(21). As NEMO is a core regulatory subunit
of IKK, these conformational changes might
lead to allosteric activation of IKK. NEMO also
associates with Lys63-linked chains (180) and
with mixed Lys11/Lys63-linked chains that are
detected on the receptor interacting protein 1,
RIP1 (7). Lys63-linked chains activate IKK by
promoting its binding to the upstream TAK1
kinase complex (181). These findings suggest
that distinct types of ubiquitin topologies, i.e.,
Met1-, Lys11/Lys63-, Lys63-, or Lys48-linked
chains, regulate signaling through inhibitor
degradation, proteasomal processing, allosteric
activation, or recruitment of upstream activat-
ing enzymes.

6.2.3. Regulation of protein localization.
The role of ubiquitylation in regulating
localization serves as a final example for
the diverse functions of the ubiquitin code.
Ubiquitin-dependent changes in localization
had originally been observed in yeast, where in-
ternalization of plasma membrane proteins can
be brought about by monoubiquitylation (141,
142). Interestingly, ubiquitin can determine the
intracellular location, even if it is not connected
to a substrate through an isopeptide bond; the
E2 Ube2E3/UbcM2 is transported into the
nucleus only when it is charged with a thioester-
linked ubiquitin (182). The ubiquitin-loaded
Ube2E3 is bound by a transport factor of the
importin family, but whether these importins
also interact with other cargoes in a ubiquitin-
dependent manner has not been determined.

Ubiquitylation can also indirectly affect pro-
tein localization. Following its multimonoubiq-
uitylation, the transcription factor p53 is ex-
ported out of the nucleus (183). p53 is modified
on several C-terminal lysine residues, and
in-frame fusions of ubiquitin to p53 are
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Chain elongation:
extension of chains by
addition of additional
ubiquitin molecules

sufficient to drive its nuclear export (5).
Because cytoplasmic accumulation of these
fusions depends on a nuclear export signal in
p53, monoubiquitylation likely changes the
accessibility of the nuclear export sequence
in p53 to the export machinery, rather than
being an export signal itself. As opposed to p53
degradation, monoubiquitylation of p53 can be
reversed by USP10, which allows reimport and
reactivation (184). Thus, by affecting intra- or
intermolecular binding events, ubiquitylation
can lead to many different consequences that
result from a combinatorial recognition of
the ubiquitin conjugate and additional factors,
such as membrane lipids, binding partners, or
substrate domains.

7. CONCLUSIONS

Groundbreaking work with Lys48- and Lys63-
linked chains suggested that different ubiquitin
linkages result in unique consequences for the
modified proteins. During the past years, much
of this ubiquitin code hypothesis has been con-
firmed: Different chain topologies adopt unique
compact or open conformations; they are syn-
thesized by enzymes that assemble the specific
modifications; they are recognized by linkage-
specific ubiquitin-binding proteins that couple
the modification to a particular outcome; they
are disassembled by enzymes that act as erasers
of the code; and they function in a wide range
of different processes.

Several questions, however, remain open.
We know little about the physiological rel-
evance of Lys6, Lys27, Lys29, and Lys33
linkages or more complex structures, such as
branched chains. Moreover, it is possible that
substrates are modified with multiple chain
types at the same time, but whether this is

associated with a particular function has
not been tested. Even for better-understood
topologies, fundamental questions need to be
addressed: Why, for example, does the APC/C
assemble Lys11- instead of Lys48-linked chains
to drive degradation? Is there physiological rel-
evance to differences in chain length? Do pro-
teins that restrict chain elongation serve roles
other than preventing the waste of ubiquitin?
How dynamic are ubiquitin chains? And can
the flexibility of chain structures be regulated
to modulate recognition by ubiquitin-binding
proteins?

In a broader sense, the systems biology of
the ubiquitin code has to be analyzed in more
detail. Given the importance of E2s in deter-
mining specificity, it is surprising how little
we know about physiological E2-E3 pairs. The
same holds true for DUBs, which are often
found in complexes with E3s and, hence, have
a lot of potential in modulating the ubiquitin
code. Finally, only a few E3s have been studied
in sufficient detail to allow a somewhat compre-
hensive assessment of their substrates. More in-
sight into substrate modifications and their cel-
lular consequences will undoubtedly uncover
more functions for the ubiquitin code.

A major breakthrough in understanding the
Inca quipus came with the discovery that cer-
tain combinations of knots encode numbers, yet
most of the information found between those
numeric knots remains mysterious. It is the
numbers of the ubiquitin code, i.e., the residues
used for assembling chains, that became better
understood in recent years; what all topologies
mean, however, has not been completely unrav-
eled. Thus, as it is the case for those trying to
decipher the code of an ancient empire, there
is much to be learned before we can crack the
ubiquitin code in its entirety.

SUMMARY POINTS

1. Proteins can be modified with a single ubiquitin or with polymeric chains that differ in
the connection between ubiquitin molecules.

2. The different ubiquitin modifications adopt distinct structures.
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3. Ubiquitin-binding proteins exploit various strategies to specifically interact with partic-
ular types of ubiquitin modifications.

4. Ubiquitin chains can be disassembled by nonspecific or linkage-specific DUBs.

5. The various ubiquitin modifications trigger a wide range of biological reactions, including
protein degradation, activation, and localization.

6. The consequences of ubiquitylation are determined by the chain topology in combination
with additional factors, such as substrate localization or sensitivity to deubiquitylation.

FUTURE ISSUES

1. What are the functions of Lys6, Lys27, Lys29, and Lys33 linkages or branched ubiquitin
chains?

2. Are there more complex structures, such as multiple chain types, attached to a single
substrate, and what are their functions?

3. How important is chain length for signaling?

4. Can the dynamics of ubiquitin chains be regulated to modulate signaling?

5. Can we dissect the network of enzymes and substrates to discover novel functions of the
ubiquitin code?
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