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The development of complex and diverse metazoan

morphologies is coordinated by a surprisingly small

number of evolutionarily conserved signaling mechanisms.

These signals can act in parallel but often appear to

function as an integrated hyper-network. The nodes defining

this complex molecular circuitry are poorly understood, but

the biological significance of pathway cross-talk is

profound. The importance of such large-scale signal

integration is exemplified by Notch and its ability to

cross-talk with all the major pathways to influence cell

differentiation, proliferation, survival and migration. The

Notch pathway is, thus, a useful paradigm to illustrate the

complexity of pathway cross-talk: its pervasiveness,

context dependency, and importance in development

and disease.
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France
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Introduction
Metazoans rely on a handful of core signaling mechanisms

to guide a wide range of developmental processes, from

the earliest specification events to organogenesis. Key

among these are the Hedgehog (Hh), Janus kinase/signal

transducers and activators of transcription (Jak/STAT),

nuclear receptor, receptor tyrosine kinase (RTK), trans-

forming growth factor-b/Decapentaplegic (TGF-b/Dpp),

Wnt/Wingless (Wnt), and Notch (N) pathways [1–4].

Together, these highly conserved pathways create a

signaling backbone supporting all stages of metazoan

development [1–4]. It is remarkable that metazoan

species, despite being constrained to this shared signaling

framework, have managed to evolve into species of vastly

diverse body plans [5��].
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To achieve the morphological complexity that is charac-

teristic of metazoans, these core signaling pathways must

integrate to form a larger, complex signaling system,

which we term the hyper-network. However, compre-

hensive knowledge of this network, the nodes that define

it and its emergent properties is lacking. Studying how

these highly pleiotropic pathways are interlinked is essen-

tial to understanding development and evolution and,

consequently, defines a fundamental problem in biology

with obvious implications for disease.

Given the pleiotropy of Notch signaling, its importance to

development and disease [6��,7–10], and its ability to

integrate with all major pathways (see below and

Figure 1), in this review we focus on Notch signal

integration, or ‘cross-talk’. We aim to provide a brief

perspective on this signaling hyper-network and illustrate

the importance of cross-talk, its pervasiveness, and its

capacity to generate complexity during development.

Metazoans share common functional and mechanistic

aspects of Notch signaling, which have been outlined

in several recent reviews [6��,7–10]. Notch signaling

involves receptor activation by a membrane-bound

Delta/Serrate/Lag-2 (DSL) ligand, leading to proteolytic

processing of the receptor (Figure 1). This releases the

central signaling molecule, the Notch intracellular

domain (NICD), which undergoes nuclear translocation

and association with a CBF1/Su(H)/Lag-1 (CSL) family

transcription factor, promoting expression of E(spl)/HES

family and other target genes [11]. Ultimately, Notch

signaling affects cell-fate specification, proliferation,

apoptosis and migration. Aberrant Notch signaling has

been associated with pathogenic conditions including

carcinogenesis. Very few studies have been specifically

designed to address pathway cross-talk; however, numer-

ous links between Notch and other signaling pathways

have emerged (Figure 2). Undoubtedly, Notch cross-talk

is pervasive in development and contributes to the

astounding spectrum of Notch function (Table 1).

Cell-fate specification
Cross-talk has an important and prevalent role in cell-fate

specification. As exemplified by Notch/RTK integration,

the influence of cross-talk on cell fate appears to be

complex, and, in different contexts, integration can have

agonistic or antagonistic effects. Antagonism predomi-

nates during C. elegans vulval development and in some

aspects of Drosophila photoreceptor development. In both

these cases, Notch opposes RTK–mediated induction of

differentiation [12–15]. In Drosophila, such antagonism is
www.sciencedirect.com
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Figure 1

A current overview of Notch signal transduction. The Notch pathway mediates regulation of a diverse array of cell-fate decisions through

juxtacrine signaling. Notch receptors are composed of an extracellular domain (NECD) containing numerous Ca2+-binding EGF-like repeats, a

small transmembrane region (NTM), and an intracellular domain (Nicd) that can act as a nuclear effector. In the ER and Golgi, NECD is modified

by a series of glycosylation events mediated by Fringe and other glycosyltransferases. In the trans-Golgi, Notch undergoes proteolysis by a

furin-like convertase, generating a glycosylated, presumably divalent-cation-stabilized Notch heterodimer. In Drosophila, two DSL ligands, Delta

and Serrate, activate signaling. In mammals, ligands include members of the Delta-like (DLL1, DLL3, DLL4) and Jagged (JAG1, JAG2) families.

Upon ligand binding, NECD is removed through cleavage by an ADAM metalloprotease, TNF-a converting enzyme (TACE). NECD remains bound

to the ligand, and both proteins may be endocytosed by the ligand presenting cell. The physical force generated by this ligand/NECD

internalization may be required for receptor cleavage by TACE, and further receptor processing required for signaling. Upon cleavage by TACE,

constitutive cleavage events mediated by the g-secretase complex release NICD. The NICD translocates to the nucleus and associates with a

CBF1/Su(H)/Lag-1 (CSL) family transcriptional regulator. In the absence of NICD, CSL family proteins are part of a repressor complex. Upon Notch

binding, co-repressors are exchanged for co-activators, including Mastermind and p300, leading to the activation of target genes, including HES

family members. Both the Notch receptor and its ligands can undergo ubiquitin-regulated internalization and degradation. We note that several

aspects of this overview reflect a working hypothesis and some aspects are not necessarily rigorously proven. This is especially true for

aspects of receptor and ligand trafficking and the exact sub-cellular localization of the cleavage events.
crucial to specification in numerous other contexts [14–

17]. Though, canonically, Notch signaling maintains an

undifferentiated cell fate, in many contexts Notch is

actually required to direct specification events, and here
www.sciencedirect.com
the effects of cross-talk may also be important. For

example, in the Drosophila eye, in addition to the pathway

antagonism observed in photoreceptor development,

Notch and RTK act cooperatively to specify accessory
Current Opinion in Cell Biology 2007, 19:166–175
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Figure 2

For an overview of Notch signaling see Figure 1. Nodes of integration are indicated by text in numbered red boxes and references for the data

in each is listed next to its corresponding number below. Some of the indicated modes of cross-talk, including the role of wingless as a

Current Opinion in Cell Biology 2007, 19:166–175 www.sciencedirect.com
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cells [14,18,19]. Such variable effects of Notch pathway

cross-talk on cell-fate specification and its context depen-

dency seem to be the rule rather than the exception.

Like Notch/RTK cross-talk, the effects of signal integ-

ration with Wnt on cell fate vary with context. During

vertebrate osteoblastogenesis, ST-2 stromal cells differen-

tiate as osteoblasts when treated with Wnt3a. In the pre-

sence of ectopic Notch1ICD, however, these cells undergo

adipogenesis. Thus, in this context, the effect of Notch on

Wnt signaling is antagonistic [20�]. In contrast, pathway

synergy is observed in the adult mouse epidermis, where

Notch and Wnt/b-catenin cooperate to maintain postnatal

hair growth. If either signal is blocked, hair follicles convert

into cysts of interfollicular epidermis, while simultaneous

activation of both pathways increases induction of ectopic

hair follicles [21]. Osteoblastogenesis is also influenced by

Notch/TGF-b cross-talk, where cooperation between

Notch1 and the TGF-b ligand BMP-2 promotes differen-

tiation [22]. During myogenesis, however, Notch and

BMP-4 synergize to inhibit differentiation [23]. The

opposing influence of cross-talk on cell fate in different

contexts thus appears to be a common theme, suggesting

that flexible integration is an essential feature of the

hyper-network.

Proliferation and apoptosis
Notch, classically associated with cell differentiation, has

also been shown to direct cells into proliferative or

apoptotic states. Interestingly, Notch has both cell-

autonomous and non-cell-autonomous effects on mitotic

activity, which in different contexts it can either promote

or suppress. Though many aspects of Notch signaling in

proliferation and apoptosis remain poorly understood, its

potential to link these events with differentiation may be

of particular relevance to dysproliferative states, includ-

ing cancer. Again, developmental context appears to

dictate how Notch activation affects the cell cycle. The

logic of integration appears complex, as Notch signals can

have either oncogenic or tumor-suppressive effects in

tumors of the same type (see below). As with differen-

tiation, this complexity may depend upon cross-talk.

To date, three distinct signaling pathways, Jak/STAT,

RTK and Wnt, have been shown to affect proliferation, in

part through integration with Notch. At the dorsoventral

boundary (DV) of the Drosophila eye primordium, where

Notch activation plays a crucial role regulating eye growth

and patterning [24�], ectopic Notch activation induces

dramatic proliferation through a non-cell-autonomous
(Figure 2 Legend Continued ) Notch ligand, are currently controversial. Da

Notch pathway components indicate that the pathway(s) shown has an effe

[77��,78–80], Box 5 [79], Box 9 [76], Box 13 [18,23,70,81–85]. Those pointin

Box 7 [36��,87], Box 10 [24�,36��,66,73,88��,89], Box 14 [20�]. Double heade

specific to the component or process listed. Also shown in the nucleus, is t

Box 11 [93�], and the influence of Notch signaling on the Nuclear Receptor

Nuclear Receptor co-factors, Box 12 [94].
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mechanism that involves activation of Jak/STAT signal-

ing through its ligand unpaired [24�–26�]. In the Droso-
phila wing disc, where multiple signals influence growth

during development [27], the Notch and RTK pathways

can synergize to promote dramatic overgrowth (Hurlbut

and Artavanis-Tsakonas, unpublished). Cross-talk with

Wnt/wingless also influences wing growth. Notch/Wnt

integration induces proliferation in cells of the wing

pouch and hinge [27] but cell-cycle arrest in those that

form the wing margin sensory organs [28]. As Notch/Wnt

integration regulates early precursor cell proliferation in

mouse intestinal crypts [29��,30] the importance of such

cross-talk in proliferation appears to be functionally, if not

mechanistically, conserved.

Notch signals have been shown to influence cell death in

both vertebrates and invertebrates. The influence of

cross-talk on this process is evident in the Drosophila
eye, where, during late pupal development, Notch pro-

vides a pro-apoptotic cue that opposes RTK-dependent

survival [31]. Demonstrating the significance of cross-

talk, in the absence of RTK signaling through the EGFR

receptor, Notch is no longer required for apoptosis. By

contrast, Notch and Wnt/wingless act together to promote

apoptosis during earlier stages, where signaling through

EGFR appears not to be involved [32]. Highlighting the

importance of context, wingless opposes a Notch pro-

apoptotic signal in the Drosophila wing [27].

Stem cells
Stem cell maintenance, crucial to regeneration, requires

signaling. Given the potent ability of Notch to influence

cellular differentiation, it is not surprising that Notch

signaling has emerged as an important regulator of stem

cells of the mammary gland, eye, skin, nervous system,

bone marrow, stroma, gastrointestinal (GI) tract and ovary

[33]. Often, Notch integration with other signaling path-

ways plays an essential role, with Notch/Wnt cross-talk

being of particular importance. In both the GI tract [34]

and early hematopoiesis [35��], Notch and Wnt influence

stem/precursor cell maintenance and, perhaps, prolifera-

tive potential, through their cooperative effect. In some

contexts, stem cell survival may depend on Notch integ-

ration with multiple pathways. In murine somatic and

human embryonic stem cells, Notch signaling activates

the pI3K/Akt/mTOR pathway, leading to specific phos-

phorylation of the Jak/STAT mediator STAT3 at serine

residue 727, which induces expression of target genes

including Sonic Hedgehog (Shh), and promotes stem cell

survival. This positive survival signal is opposed by
shed arrows provide the direction of influence. Arrows pointing to

ct on Notch signaling, Box 2 [18,60,74–76], Box 3 [77��,78], Box 4

g away indicate an effect of Notch on the pathway(s) listed, Box 6 [86],

d arrows, Box 1 [90], Box 8 [81,91,92], indicate mutual influence

he influence of RTK signaling on the HES co-repressor Groucho,

pathway (NR) by Notch targets of the HES family, which can serve as

Current Opinion in Cell Biology 2007, 19:166–175
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Table 1

The biological contexts of Notch cross-talk.

Pathway Species Context Process/function References

Hh D. melanogaster Eye Cooperate in eye development [74]

Hh D. rerio Vasculature Artery/vein cell specification (with VEGF) [95]

Hh H. sapiens Meduloblastoma Promote tumor growth and survival (with Wnt) [59,60]

Jak/STAT D. melanogaster Eye Cooperatively promote growth [24�–26�]

Jak/STAT D. melanogaster Foregut Cooperatively govern development [96]

Jak/STAT D. melanogaster Oogenesis Specify stalk and pre-polar cell fate [97–99]

Jak/STAT H. sapiens, M. musculus Embryonic and somatic stem cells Stem cell survival [36��]

Jak/STAT M. musculus Central nervous system Cooperate in astrocyte differentiation [100�]

Jak/STAT M. musculus Neural stem cells Specify stem cell survival versus differentiation [36��]

RTK C. elegans Vulva Specify vulval cell fates [13]

RTK D. melanogaster Chordotonal organ SOP fate specification [17]

RTK D. melanogaster Eye Photoreceptor and accessory cell specification [14]

RTK D. melanogaster Eye/Antenal disc Specify eye versus antennal identity [101]

RTK D. melanogaster Mesoderm Specify muscle cell subtypes [18]

RTK D. melanogaster Notum Bristles SMC fate specification [16]

RTK D. melanogaster Trachea Specify fusion cell fate [64]

RTK D. melanogaster Wing Specify wing vein versus intervein [102]

RTK D. melanogaster Wing Cooperatively promote growth Unpublished

RTK D. rerio Vasculature Artery/vein cell specification (with Shh) [95]

RTK H. sapiens Cell migration Notch blocks Ras induced migration in culture [56]

RTK H. sapiens Oncogenesis Act cooperatively in transformation or growth [53,55]

RTK H. sapiens Thymocyte development T-Cell lineage specification (Notch and TCR) [103]

RTK H. sapiens Tumor angiogenesis Cooperatively promote angiogenesis [104]

RTK M. musculus Embryonic segmentation Cooperatively regulate segmentation clock [105]

RTK M. musculus Spinal cord development Maintenance of the caudal neural plate [106]

RTK M. musculus Neurogenesis Promote radial glial identity [107]

RTK M. musculus Oncogenesis Cooperation or antagonism [54,56,57]

RTK M. musculus Pancreatic tumorigenesis Cooperate in pathogenesis [58]

TGF-b D. melanogaster Germline stem cells Maintenance of stem cells and stem cell niche [37]

TGF-b D. melanogaster Trachea Specify fusion cell fate [66]

TGF-b D. rerio Cardiac development Promote Epithelial-to-mesenchymal transition [108]

TGF-b M. musculus Embryonic endothelial cells Regulation of migration [70]

TGF-b M. musculus Endothelial migration Notch blocks TGF-b induced migration in culture [70]

TGF-b M. musculus Muscle Cooperatively inhibit myogenic differentiation [23]

TGF-b M. musculus Neurogenesis Cooperatively inhibit neuroepithelial differentiation [81]

TGF-b M. musculus Osteoblastogenesis Cooperatively promote differentiation [22]

TGF-b M. musculus Prostate gland Regulation of branching morphogenesis [68]

TGF-b M. musculus Prostate gland Regulates epithelial bud formation [68]

Wnt D. melanogaster Epidermis Interact genetically in this context [109,110]

Wnt D. melanogaster Trachea Specification of fusion cell fate [67]

Wnt D. melanogaster Wing Cooperatively regulate development [80,86,109,111–114]

Wnt D. melanogaster Wing margin sensory organs Cooperatively induce cell cycle arrest [28]

Wnt D. melanogaster Wing Pouch and Hinge Cooperatively promote growth [27,115]

Wnt H. sapiens Mammary duct morphogenesis Antagonistically regulate branching [69]

Wnt H. sapiens Meduloblastoma Promote tumor growth and survival (with Hh) [60]

Wnt H. sapiens Melanoma Promote tumor growth and metastasis [61]

Wnt M. musculus Epidermis Cooperate in postnatal hair follicle induction [21]

Wnt M. musculus Gastrointestinal tract Cooperatively regulate stem cell proliferation [30,34]

Wnt M. musculus Hematopoietic stem cells Stem cell maintenance [35��]

Wnt M. musculus Osteoblastogenesis Specify cell fate [20�]

Wnt M. musculus Somites Cooperate in somitogenesis [75]
signaling through Jak/p38-MAPK, downstream of ciliary

neurotrophic factor (CNTF), which counters Notch-

responsive STAT3 phosphorylation at serine 727. This

signal instead promotes STAT3 phosphorylation at tyro-

sine residue 705 and, ultimately, cell differentiation [36��].
In the Drosophila ovary, maintenance of germline stem

cells (GSCs) requires a Notch/TGF-b signal feedback

loop. Loss of either signal leads to GSC differentiation
Current Opinion in Cell Biology 2007, 19:166–175
and exit from the stem-cell niche [37�]. Dysregulation of

the stem cell self-renewal process, which involves regula-

tion of apoptosis, proliferation and differentiation, may be a

significant event in the genesis of certain cancers. Indeed,

it is speculated that blocking this process may be a useful

therapy [38]. This might be achieved by targeting the

nodal points of signal integration, thus modulating the

effects of cross-talk.
www.sciencedirect.com
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Oncogenesis
In normal tissues, proliferation, differentiation and apop-

tosis exist in delicate balance, and it is the disturbance of

such homeostasis that commonly underlies oncogenesis.

Given the fundamental importance of signaling in the

regulation of these processes, it is not remarkable that

disruptions in all major signaling pathways, including

Notch, have been associated with oncogenesis [39–49].

Notch, initially linked to cancer through its frequent

mutation in T-Cell acute lymphoblastic leukemia

[50,51], can, in some tumor-types, integrate with other

pathways to affect the course of oncogenesis profoundly.

However, the observed effects of cross-talk are often

complex and context-dependent. For example, Notch

signaling has been shown to either enhance [52–55] or

suppress [56,57] the transformation and proliferation of

tumors in which RTK is activated. Such inconsistencies

are likely to reflect differences in the underlying signal

integration in these tumors or associated contexts. In

pancreatic tumorigenesis, EGFR signaling may act,

in part, to induce Notch activation. Here, cooperation

between these pathways may be important to pathogen-

esis [58]. In human and murine medulloblastoma,

Notch and Shh synergize to promote tumor proliferation

and survival [59]. In fact, in medulloblastomas, Shh-

dependent tumor growth and survival involves synergy

with both Notch and Wnt [60]. Notch/Wnt cross-talk has

also been suggested to be of importance to melanoma.

Activation of Notch1 enhances primary melanoma cell

growth and the potential for metastasis through b-catenin

upregulation [61]. It is clear that manipulating Notch

activity can modify cell fate, and, as first speculated over

a decade ago, this capacity makes Notch a therapeutic

target of potentially great significance [62]. As evidenced

by the different impacts of Notch/RTK integration on

tumorigenesis, the effects of Notch manipulation are

difficult to predict a priori. As a result, a substantial

knowledge of the signaling hyper-network underlying a

targeted tumor may be necessary for optimal therapy.

Branching morphogenesis/migration
Networks of branched, tube-like structures, found in

metazoan organs of numerous types, are formed through

precise regulation of cell differentiation, proliferation,

apoptosis, adhesion and migration. Notch is among the

many signals crucial to branching morphogenesis, and

here cross-talk has also been documented to be import-

ant. During Drosophila tracheal development, cross-talk

between Notch and the Wnt/wingless, TGF-b/Dpp and

RTK/FGFR pathways generates branch patterning

through the cooperative specification of cell fate [63–

67]. In vertebrates, Notch cross-talk functions in epi-

thelial bud formation and branching of the developing

prostate gland [68]. Specifically, Notch/TGF-b antagon-

ism helps regulate prostate branching, while TGF-b

signaling, activated by the BMP-7 ligand, limits Notch

activation, and the epithelial bud formation it promotes,
www.sciencedirect.com
to subsets of cells within the urogenital epithelium.

Cross-talk is also evident in the developing mouse mam-

mary gland, where Notch4-mediated inhibition of

branching is overcome by Wnt1 activation [69].

The influence of cross-talk on cell migration has been

observed in MDCK and MDA-MB-435 cells, where

expression of constitutively active Notch4 blocks hep-

atocyte growth factor (HGF)-induced Ras activation and

cell migration [56]. Additionally, when murine embryonic

endothelial cells are in contact, ligand-dependent Notch

signaling is activated, and BMP/TGF-b-mediated

migration is inhibited [70]. This mechanism linking

migration to contact through cross-talk may be of crucial

importance both in development and in the pathology of

numerous diseases.

Conclusions
The pleiotropy observed for Notch signaling during

development is in large part dependent on the ability

of context to influence its activity. The basic features of

Notch signaling may have emerged by the Precambrian

era [71,72] and, as new metazoan species evolved, Notch

signaling seems to have retained a central role in devel-

opment: coupling the fate choices of adjacent cells.

However, the mechanisms regulating the Notch signal

in different developmental contexts did not necessarily

remain invariant during evolution. During development,

Notch activity is modulated through the regulation of

ligand availability, Notch pathway component transcrip-

tion and trafficking, and post-translational modification of

both the receptor and its ligands. The capacity for modu-

lation at multiple levels may allow other signals and

additional context-dependent factors to converge with

Notch at numerous points. Supporting this, known mech-

anisms of signal integration involve nodal points at each

step of Notch signal transduction (Figure 2).

It is important to note that cross-talk does not require

synchronous signals, as sequential signals can also inte-

grate. Sequential integration can affect progenitor cells

that are maintained by Notch and specified by sub-

sequent signals. The mutual influence that pathways

can exert on each other through the regulation of ligands

is another example of sequential integration. Here, the

effects of cross-talk can be non-cell-autonomous. In

different contexts, the output of Notch signaling includes

the Hh, Jak/STAT, TGF-b/Dpp and Wnt pathway

ligands [24�,36��,66,73]. Reciprocally, Notch ligands are

an output of Hh, RTK, TGF-b/Dpp and Wnt/wingless

signaling [18,60,74–76]. This suggests that feedback

loops represent important interlinking mechanisms that

help turn separate signals into a network. Though soluble

Notch ligands have been observed in C. elegans, it is

noteworthy that Notch signaling is unique in its general

requirement for direct membrane-membrane contact.

Integration with Notch might, therefore, be a useful
Current Opinion in Cell Biology 2007, 19:166–175
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method for pathways activated by diffusible ligands to

gain spatial resolution. As such, Notch may play a pro-

minent role in bridging major pathways.

Through either a direct interface between pathways or

shared target sets, signal integration might allow a simple

interconnected system to generate an extraordinarily

diverse output. The dramatic range of morphologies that

these few signals can create supports this notion. Study-

ing its effects on the transcriptional output of integrated

signals may be a useful approach to understanding cross-

talk. Extrapolating from the Notch cross-talk paradigm,

several features of the signaling hyper-network can be

inferred. First, signaling pathways are remarkably inter-

linked and can integrate at the cellular and multicellular

level through multiple mechanisms. Second, cross-talk

is of broad importance, impacting numerous pathway

functions, and its dysregulation appears profoundly

important to cancer, and potentially to other diseases.

Third, cross-talk is flexible, differing in consequence in

different contexts. The unknown source(s) providing this

specificity are of fundamental importance. As multiple

mechanisms interlink diverse signaling pathways with

Notch, it is possible that the flexible nature of cross-talk

depends upon the primary mechanism employed in each

context, but a wide range of factors may also be involved,

including additional cross-talk.
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