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Summary
Feedback loops have been identified in a variety of
regulatory systems and organisms. While feedback loops
of the same type (negative or positive) tend to have
properties in common, they can play distinctively diverse
roles in different regulatory systems, where they can
affect virulence in a pathogenic bacterium, maturation
patterns of vertebrate oocytes and transitions through
cell cycle phases in eukaryotic cells. This review focuses
on the properties and functions of positive feedback in
biological systems, including bistability, hysteresis and
activation surges. BioEssays 30:542–555, 2008.
� 2008 Wiley Periodicals, Inc.

Introduction

A biochemical control system comprises a set of com-

ponents (molecules, genes, etc), and a set of regulatory

interactions.(1–4) An interaction is designated positive if

activation or accumulation of a component leads to activation

or accumulation of another component, and negative if acti-

vation or accumulation of a component leads to deactivation

or depletion of another component.(1,4) If the structure of a

system is such that a certain component influences its

own activity and/or levels, then this component is said to

regulate itself via a feedback loop (Fig. 1) (see Box 1 for a

Glossary).

The notion of feedback was first introduced in cybernetics

to denote the ability of a control system to adjust itself using

its output as (a part of) its input (Fig. 1A).(5,6) The output

constitutes the specific property that the system controls. In

systems with negative feedback, a deviation in the output
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Abbreviations: PFL, positive feedback loop; NFL, negative feedback

loop.

Box 1. Glossary.

Feedback: the property of a control system to use its

output as (a part of) its input.

Positive feedback: the type of feedback when a

deviation in the controlled quantity is further amplified

by the control system.

Negative feedback: the type of feedback when a

deviation in the controlled quantity is counterbal-

anced by the control system.

Deterministic system: a system with exactly

predictable (non-random) behavior; this term is often

applied to systems that can be described by dif-

ferential equations.

Stable steady state: the state of a deterministic

systems such that all trajectories that start from a

certain domain in the state space converge to this

state.

Bistability: the property of a deterministic system to

have two stable steady states.

Bimodality: the property of a probability distribution to

have two distinct maxima.

Signal–response curve: the curve reflecting the

dependency of the output (response) of a deter-

ministic system on the incoming signal (represented

by a parameter).

Hysteresis: dependency of the steady-state response

curve of a deterministic system on the direction of the

parameter change (increase or decrease).

Ultrasensitivity: the property of a system to

generate a sharp, switch-like response, resembling

that of a positively cooperative enzyme; this type

of response is typically described by a sigmoidal

signal–response curve.
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Figure 1. Regulatory circuits with feedback. A: General schematic of a system with feedback. B–G: Possible architectures of circuits

with feedback. Circles represent regulatory components, arrows denote activation, and T-shaped pointers denote repression. B: Positive

feedback system with one component. C: Negative feedback system with one component. D: Double-negative feedback loop. E: Positive

feedback loop with two mutual activators. F: Regulatory system containing a negative feedback loop (A–C–B) and a positive feedback loop

(D–G–F–E). G: Positive autogenous transcriptional regulation involving activation of the regulator X by phosphorylation. The gene x

encoding the regulator X is transcribed from two promoters: P1, which is inducible by the phosphorylated form of the regulator X, and P2,

which is constitutive.
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results in changes in the direction opposite to the original

deviation. By contrast, in systems with positive feedback, a

deviation in the output causes the output to change even

more in the direction of the original deviation.(5) As a result,

negative feedback generally serves to stabilize the state of

the controlled system, whereas positive feedback amplifies

deviations and triggers state changes.(1)

Positive and negative feedback loops may consist of a

single component that activates and represses directly its own

activity, respectively (Fig. 1B,C); or they may include several

components and involve indirect interactions (Fig. 1D–G). The

overall sign of a complex feedback loop (i.e. positive or

negative) depends on the constituting elementary interactions

(Fig. 1D–G).(1) For example, two mutually repressing compo-

nents form a positive feedback loop (PFL, also termed

‘‘double-negative feedback loop’’) (Fig. 1D). This is also true

of circular regulatory cascades consisting only of positive

regulators or having an even number of negative regulators. By

contrast, a circular cascade consisting of an odd number of

negative regulators forms a negative feedback loop (NFL).

In this review, we discuss the behaviors promoted by

positive feedback in the regulation of cellular processes.

Perhaps the earliest example of biological feedback control

was end-product inhibition in enzymatic pathwayswhereby the

final product of a biochemical pathway inhibits the activity of

an enzyme operating early in the pathway. For example, the

biosynthesis of L-isoleucine requires L-threonine deaminase,

the activity of which is inhibited by L-isoleucine.(7) Later, it

became evident that feedback also plays a critical role in gene

regulation.

The extensively investigated lac operon of Escherichia

coli (8) and the lysis–lysogeny decision circuit of phage

lambda(9) exemplify systems with positive feedback. The main

component of the feedback circuit of the lac operon is the

repressor LacI, which, upon binding the inducer allolactose,

loses the ability to bind to the lac operator and repress

transcription of the lacZYA operon. Accumulation of allo-

lactose thus leads to elevated expression of the transport

protein LacY, which in turn increases the rate of lactose intake

and its conversion into allolactose. While this circuit constitutes

a multi-component PFL, there is also a NFL because LacZ

metabolizes allolactose thus decreasing its availability to

LacI, which would eventually lead to repression of the lacZYA

operon.(10) The circuit governing the lysis–lysogeny decision

of phage lambda includes the main regulator CI that directly

activates its own expression. However, at very high levels,

CI represses its own transcription, thus preventing CI over-

expression.(9) CI also represses the cro gene, whose product

is a repressor of both the cI and cro genes, which results in

additional feedback loops.(9)

The type of feedback in which proteins directly regulate their

own expression—termed ‘‘autogenous regulation’’—received

special attention in the mid-1970s.(11–13) A theoretical study

argued against the existence of positive autogenous regulation

because such circuits were expected to be disadvantageous

with respect to a number of functional criteria.(12) To provide

empirical support for this argument, the study indicated that the

only known examples of self-regulating transcription factors in

enteric bacteria were repressors. However, as the information

about bacterial control systems accumulated, it has become

clear that a considerable number of regulatory proteins directly

activate transcription of their own genes. Indeed, several of the

49 autoregulated transcription factors in E. coli promote their

own expression.(14) The wide occurrence of positive autoregu-

lation raises questions of the biological roles of this mode of

control and of positive feedback in general.

Positive feedback can provide an

efficient switching mechanism

Regulatory systems allow living cells to alter biochemical

processes or gene expression programs in response to

changes in the intracellular and/or extracellular environments.

Then, what advantages does positive feedback provide in

terms of a system’s switching efficiency? How does the

presence of a PFL enhance the cell’s ability to respond to

environmental signals?

Mathematical modeling demonstrates that positive feed-

back contributes to the efficiency of a transcriptional regu-

latory system (Box 2; Fig. 2). Consider the case when the

autogenous regulator must be activated (e.g. phosphorylated)

to exert its biological activity, such as the ability to bind to a

promoter and mediate gene transcription (Fig. 1G). This mode

of positive regulation is typical of a variety of bacterial signal

transduction pathways,(15) such as those governing sporula-

tion in the Gram-positive Bacillus subtilis(16) and virulence

in the Gram-negative pathogen Salmonella enterica.(17) In the

absence of an activating signal, the rate of dephosphorylation

of the regulatory protein will be higher than the phosphory-

lation rate so that the existing regulator molecules will be

largely unphosphorylated. The production rate and, therefore,

the levels of the regulatory protein are low, because there is

very little induction in the absence of phosphorylation (Fig. 2).

Having more protein would not increase a cell’s capacity to

activate genes, because the regulator molecules would still be

unphosphorylated and therefore inactive. Thus, by limiting the

production of unphosphorylated regulator, the cell avoids

wasting its resources, and may also circumvent the possibility

of having the regulatory protein phosphorylated by a non-

physiological partner in response to a non-physiological

signal.(18)

When a signal promotes phosphorylation of an autogenous

regulator, the number of phosphorylated regulator molecules

goes up, which, due to positive feedback, leads to further

increases in the total regulator levels, as well as the levels of

the phosphorylated form (Fig. 2, solid lines). By contrast, if the

inducible promoter is replaced by a constitutive promoter, the
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total levels of the regulator will not depend on the phosphory-

lation or dephosphorylation rates (Fig. 2, green dashed line).

Therefore, under non-activating conditions such a system will

contain many unphosphorylated, and thus inactive, regulator

molecules. Indeed, under such conditions, the total regulator

level (Fig. 2, green dashed line) is significantly higher than the

phosphorylated regulator level (Fig. 2, blue dashed line). While

the total regulator level would be lower in a system with a

weaker constitutive promoter, this would also decrease the

level of phosphorylated regulator (Fig. 2, blue dash-dotted

line), which may limit the number of targets that the

phosphorylated regulator can control effectively.

Systems with positive feedback can display a slower

response to an environmental signal when compared to those

that produce a regulatory protein constitutively (Fig. 2).(12,19,20)

Activation delays are due to the need to synthesize more

regulator molecules upon activation, while in the case of

constitutive production, the molecules have already been

synthesized and just need to be phosphorylated. The extent of

the activation delay, however, will depend on the kinetic

parameters of a system and may be negligible. On the other

hand, medium to large delays can sometimes be beneficial as

they can provide a means to order in time the action of cellular

response mechanisms.(21–23)

Many eukaryotic cellular control systems contain a fast

and a slow PFL.(24,25) The presence of several interlinked

feedback loops can enhance switching performance. While

single PFLs tend to amplify noise(19) and to slow down

Box 2. Mathematical model of gene regulation with positive feedback

In a simple transcriptional regulatory circuit, a regulator in its activated (e.g. phosphorylated) form directly induces

transcription of its own gene (Fig. 1G). A prototypical system of this type is the PhoP/PhoQ system of S. enterica, in which

the phoPQ operon has a constitutive promoter and a promoter that can be induced by phosphorylated PhoP (Fig. 6).(93)

The dynamics of gene regulation can be quantitatively described using the formalism of ordinary differential

equations.(63,101–103) Our model consists of the following two equations:

dA

dt
¼ kaP � ðk�a þ kd ÞA;

dP

dt
¼ k1 þ k2

KAH

1 þ KAH
þ k�aA � ðka þ kd ÞP :

In these equations, A and P are the concentrations of the active (phosphorylated) and inactive (unphosphorylated) forms

of the regulatory protein, respectively; ka and k�a are the phosphorylation and dephosphorylation rates for the regulatory

protein. The parameter kd is its degradation/dilution rate for the unphosphorylated and phosphorylated forms of the

regulator. Whereas in the general case these two forms can decay at different rates, here we make the simplifying

assumption that these rates are equal. k1 is the rate of protein synthesis due to the constitutive promoter (assumed to be

weak), and k2 is the protein synthesis rate due to the inducible promoter. ka and k�a are also the control parameters for the

circuit: by adjusting the cell regulates the levels of the active regulator. The parameter K is the association constant for

regulator–promoter interactions. H is the so-called Hill coefficient;(65,70,102,104,105) it describes cooperativity of binding of the

regulator to its own promoter. If the regulator protein binds DNA as a dimer, which is frequently the case in bacterial signal

transduction, then H¼ 2.(106) The equations describing the absence of feedback can be obtained in the limit K!1: in this

case, there are two constitutive promoterswith protein production rates k1 and k2. We can also model feedback disruption by

setting k2¼ 0, which is equivalent to inactivation of the inducible promoter.

The computed dynamics of the active form of the regulator, as well as its total levels, are shown in Figs 2 and 3. Fig. 2 was

generated with the following default parameter values: ka¼ 5 min�1, k�a¼ 20 min�1, k1¼ 0.01 mM �min�1,

k2¼ 0.3 mM �min�1, kd¼ 0.08 min�1, K¼ 5 mM�2, H¼ 2. These parameter values were chosen to be close to biologically

significant values. In the case of two constitutive promoters (K¼1), the total regulator concentration (Fig. 2, green dashed

line) remains at a constant level that is close to the steady-state level for the system with feedback (Fig. 2, blue dashed line).

This agrees with experimental observations for the transcriptional regulator PhoPof S. enterica.(17) If the inducible promoter

is disrupted (k2¼ 0), then the modeling results show a substantial decrease in the total regulator levels (Fig. 2, brown dash-

dotted line), which also agrees with experimental results for PhoP (D. Shin and E. A. Groisman, unpublished). The ability of

the model to reproduce the above experimental results is robust with respect to parameter variations. Fig. 3A was generated

with the following default parameter values: ka¼ 25 min�1, k�a¼ 20 min�1, k1¼ 0.01 mM �min�1, k2¼ 0.3 mM �min�1,

kd¼ 0.08 min�1, K¼ 5 mM�3, H¼ 3. Fig. 3B was generated with the following parameter values: ka¼ 25 min�1,

k�a¼ 20 min�1, k1¼ 0.01755 mM �min�1, k2¼ 0.3 mM �min�1, kd¼ 0.08 min�1, K¼ 5 mM�3, H¼ 3.
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activation, a combination of a slow and a fast PFL increases

robustness of the ON-state in the presence of noise, and

promotes a quick turn-on and a slow turn-off.(24) Analysis

of a systems having two (fast and slow) PFLs and a

slow NFL demonstrated that the two PFLs confer rapid

activation, persistence of the system’s ON-state, and

insensitivity to noise, whereas the NFL is responsible for

efficient deactivation in the absence of signal.(25) PFL

cascades and combinations of PFLs and NFLs can also

promote excitability, which is the ability of a system to

become activated in response to relatively small perturba-

tions in the input signal, and then exit the ON-state sponta-

neously.(26,27) This behavior may be advantageous when it is

desirable to limit the time that the system spends in the ON-

state; this is the case, for instance, in bacterial competence

control.(27–29)

Positive feedback can promote bistability

and hysteresis

Perhaps the most-studied dynamic feature of control circuits

with positive feedback is bistability(1,16,30–59) (for reviews, see

Refs 10,60), which is intrinsic to sporulation(16) and compe-

tence(48,57) in the bacterium B. subtilis, the control of the

eukaryotic cell cycle(51–53) and the maturation of frog

oocytes.(37,60) A system is called bistable if it has two stable

steady states. The term ‘‘bistability’’ is used to characterize a

system that can be described by a set of variables whose

values change over time as deterministic (non-random)

functions. In a biochemical setting, such variables usually

correspond to the concentrations of the key molecular species

in the system. Deterministic descriptions are valid for the

traditional ‘‘batch culture’’ biological experiments, where

averaging over large populations of cells masks random

Figure 2. Activation dynamics for the positive autoregulation model described in Box 2. The model reflects the presence of an inducible

promoter, which gives rise to a positive feedback loop, and a constitutive promoter (Fig. 1G). The assignment K¼1 in the model renders the

inducible promoter constitutively active, whereas the assignment k2¼ 0 makes the inducible promoter inactive; both of these assignments

result in constitutive synthesis of the regulator (no feedback). Regardless of the presence of feedback, the initial (pre-activation) state of the

system is its steady state under non-activating conditions. This was implemented in the simulations by solving the algebraic equations for

the steady state of the model under non-inducing conditions. These equations had a unique real solution which was used to define the state

of the system before and at the time of activation. When the system is activated (in our example, at 0 minutes), it experiences an

instantaneous 5-fold increase in the regulator phosphorylation rate (ka). The post-activation temporal dynamics was simulated by

numerically solving the differential equations given in Box 2.
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variations of intracellular concentrations of the relevant

chemical species. Typically, these concentrations converge

to certain values over large periods of time, as long as the

system is not perturbed externally. The values that charac-

terize the state of the system ‘‘when nothing happens’’

correspond to stable steady states. Convergence to one of

the two stable steady states in a bistable system depends on

the initial conditions (Box 3; Fig. 3). One of the two steady

states generally corresponds to low activity of the system, and

the other one to high activity. For example, in the E. coli lactose

utilization system (mediated by the lac operon), b-galactosi-

dase activity can converge to one of two steady states

depending on the initial concentrations of the system’s

components.(61) Likewise, the cell cycle control systems of

eukaryotes has two stable states, interphase and mitosis, that

are characterized by low and high activity of the kinase Cdc2,

respectively.(53,62,63)

The property of bistability is closely associated with the

property of distributional bimodality for clonal cell populations.

At the single-cell level, a biochemical system can be described

by the distributions of its biochemical components (Fig. 4).

Such distributions show how many cells in a population have a

particular number of molecules (or a particular concentration)

of a biochemical component. If we average the distributions,

we will obtain a set of mean values that can be viewed as

the state of a deterministic system (i.e. the batch-culture

approach). Such a system can possess the property of

bistability. If it is bistable with respect to a biochemical

component, then the intracellular levels of this component in

a clonal population are likely characterized by a bimodal

distribution (Fig. 4B).(32,49,64) Because bimodality is relatively

easy to study experimentally, some researchers have adopted

the term ‘‘bistability’’ as a synonym for distributional bimodality

of the biochemical component of interest or relevant reporter

molecules (Box 3).(10,35,48,57,58)

The strong connection between positive feedback and

bistability arises from the fact that a PFL is necessary, but

not sufficient for bistability.(2,40,60) Therefore, it should be

expected that the key regulator(s) of a bistable circuit will be

involved in a PFL. This principle can be used as a guideline to

identify candidate regulators for experimental studies when

the detailed architecture of the bistable control circuit is

unknown.(4)

All bistable systems are expected to display some

degree of hysteresis,(38,60) which is the ability to produce

different steady-state signal–response curves for the cases of

increasing and decreasing stimulus intensity (Fig. 5A,B).(10,60)

Bistable systems are also characterized by an abrupt

transition from a low to a high steady state after the activat-

ing signal passes a certain threshold value (Fig. 5A,B).

Although a similar phenomenon can be observed for mono-

stable systems with very steep signal–response curves

Box 3. Conditions and attributes of bistability

In addition to positive feedback (a necessary condition), requirements for bistability usually include the presence of a

functional element with a sigmoidal signal–response curve within the feedback loop.(10,38,60) Sigmoidality guarantees a

sharp, threshold-like (‘‘ultrasensitive’’) response to the activating stimulus. In mathematical modeling studies, sigmoidal

functions are typically approximated using Hill functions with Hill coefficient>1 (see Box 2).(65,70,102,104,105) Increases in the

Hill coefficient tend to favor bistability, but changes in other parameters can make the system monostable (Fig. 3A). An

example of molecular mechanism leading to sigmoidal response is cooperative binding of a regulator protein to DNA, or

binding in the form of a multimer.(106) It should be noted, however, that other, not necessarily sigmoidal, signal–response

curves can result in bistability.(107) While a system with a PFL can have at most two stable steady states, the presence of

several PFLs can result in multistability.(4) Some monostable systems can demonstrate quasi-bistable behavior: over

large periods of time, the system appears to be ‘‘stuck’’ in one of two states, and the convergence from these states to the

unique steady state is very slow (Fig. 3B). This seemingly bistable behavior can have biological roles, because the true

unique steady state might not be reachable over biologically reasonable time scales.

If the concentrations of components in a biochemical system are low, stochastic fluctuations in the concentration

values cannot be neglected; this phenomenon is one of the major factors contributing to physiological heterogeneity of

populations of genetically identical cells.(64,72,108,109) Bimodal distributions for (bio)chemical systems are often associated

with bistability of the deterministic model of the system, which describes the temporal dynamics of average

concentrations.(32,49,64) In rigorous terms, bistability is not equivalent to distributional bimodality.(110) In relatively

simple chemical systems with mass action kinetics, bistability is neither necessary nor sufficient for bimodality; however,

when the system is large enough, the two properties tend to be present simultaneously.(64) This raises the possibility that the

same general rule will apply to complex biochemical systems. It should also be mentioned that, while bistability

characterizes steady states, experimentally observed bimodality does not necessarily correspond to a steady state of the

system.(48)
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(Fig. 5C),(65) monostable systems do not demonstrate

hysteresis. An extreme manifestation of hysteresis is

irreversibility, which takes place when changing the signal

intensity from high to low fails to bring the system back to the

initial inactive state (Fig. 5B).(60,66,67) This occurs when two

stable steady states, high and low, coexist for arbitrary

small signal intensities. The irreversibility implies that,

after the stimulus has been removed, the system will be

trapped in the activated state, unable to return to the basal

level of activity.

The best-characterized examples of a PFL promoting

distributional bimodality are synthetic transcriptional regu-

latory circuits implemented in model organisms.(32,39) A

synthetic system was engineered in Saccharomyces cerevi-

siae where the main component was the tetracycline-

responsive transactivator (rtTA), which assumes an active

form and binds DNA in the presence of doxycycline.(32) In this

strain, rtTA was fused to the green fluorescent protein (GFP),

making it possible to monitor the levels of the regulator

expressed from an rtTA-activated promoter. For a range of

doxycycline concentrations, the distribution of GFP fluo-

rescence in the system was bimodal, with the peak corre-

sponding to high expression being more pronounced for

higher doxycycline concentrations.(32) Bistability has been

demonstrated not only for the relatively simple synthetic

regulatory circuits, but also for the well-studied lac operon

of E. coli(49) and in the lysis–lysogeny circuit of phage

lambda.(46,68)

Biological roles of bistability and hysteresis

Genetic, metabolic and signaling regulatory systems with

bistable behavior (or, more precisely, bimodal distributions

of reporter signal intensity) have been found both in

prokaryotes(10,16,35,48,69) and eukaryotes.(30,31,33,50,58,59,70,71)

While all these systems are known (or expected) to contain

PFLs, they differ in the feedback loop structure, regulatory

elements and their overall complexity. Wide occurrence of

bistability among different types of biological regulatory

Figure 3. Dynamical regimes of the positive autoregulation

model described in Box 2. A: System dynamics in the

monostable and bistable regimes. Hill coefficient reflects the

degree of cooperativity in binding of DNA by the activator (see

Box 2). For Hill coefficient 3, the model demonstrates bistable

behavior (solid red lines): the system converges to a low-activity

steady state if the initial level of the active regulator is low, and it

converges to a high–activity steady state if the initial active

regulator level is high. The system is monostable for Hill

coefficient 2 (blue lines) and Hill coefficient 3 after activation

(dashed and dash-dotted red lines). For the trajectories

depicted by solid lines, the two distinct initial states are (0.1,

0.1) and (4, 4), where the two numbers in parentheses

represent the concentrations of the phosphorylated and

unphosphorylated regulator. The dashed and dash-dotted lines

illustrate the dynamics of activation, simulated in a similar way

to the results shown in Fig. 2. The initial state of the system is its

steady state under non-inducing conditions. The system is

activated (in our example, at time 0) via an instantaneous 5-fold

increase in the regulator phosphorylation rate (ka; see Box 2),

which can occur as a result of binding of an inducing ligand to

the sensor kinase phosphorylating the regulator. B: Pseudo-

bistable behavior of the model (see Box 3); the initial states are

(0.1, 0.1) and (4, 4). Although the model possesses a unique

steady state (evident from the large-time dynamics), on

biologically realistic time intervals (50–200 minutes) the model

behaves like a bistable system.
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systems raises the question of the biological significance of

bistability.

Cell population heterogeneity: bacterial sporulation

and competence control

Heterogeneity of a clonal cell population, which is promoted by

the intrinsic randomness of molecular mechanisms of

gene expression,(29,71,72) can often be attributed to bistable

regulation.(31,37,57,69,73) Therefore, whenever associated with

survival advantages, heterogeneity itself could be viewed as a

biological role of positive feedback. This appears to be

the case in the complex sporulation control system of B.

subtilis.(10,16,35) When this soil bacterium experiences nu-

trient-limiting conditions, it undergoes dramatic morphological

and physiological changes to generate a dormant spore. Only

a percentage of cells in a B. subtilis population sporulate in

response to nutrient limitation, which indicates bistable

behavior.(10) Commitment to sporulation is modulated by the

master regulator Spo0A which directly activates its own

expression(16) and participates in a complex phosphorelay

that constitutes a multicomponent feedback loop promoting

Spo0A activation. Positive autogenous regulation of Spo0A

is necessary for coexistence of two (sporulating and non-

sporulating) subpopulations.(16) Phenotypic heterogeneity

may be a mechanism that increases the chances of the

population’s survival in a randomly changing environment.(35)

Sporulation is an expensive and irreversible process; there-

fore, having only a subpopulation of cells committed to

sporulation appears to be a clever strategy in an environment

where harsh conditions can be reversed, thus alleviating the

necessity to sporulate.(35)

Genetic competence is the property of bacterial cells

to directly uptake DNA from their surroundings.(28) The

competence regulation circuit of B. subtilis displays charac-

teristics of bistable behavior; a cell population in the late

exponential phase typically consists of subpopulations of

competent and non-competent cells.(10,48,57,74) Similarly to

Spo0A, the key regulator of competence, ComK, directly

activates its own expression, and also participates in addi-

tional feedback loops. Auto-activation of ComK is necessary

for heterogeneity.(57) The size of the competent subpopulation

is typically small: the proportion of competent cells in labo-

ratory strains is only 	10%, and for wild isolates 	1%.(35,48)

Although enriching the genome with foreign DNA can confer

new traits to a population, the prolonged semidormancy that

accompanies the competent state can pose a challenge for

survival.(48,75) In addition, efficient genetic exchange can be

detrimental, especially in the case of interspecies ex-

change.(28) Thus, this heterogeneity-generating mechanism

of B. subtilis might have evolved in a way that maximizes

benefit-to-risk ratio by triggering competence only in a small

subpopulation of cells.(48)

Eukaryotic cell fate determination

Bistability is used by eukaryotes as a mechanism of cell

fate determination.(37,45,47,54,59,60) For example, maturation of

Xenopus laevis oocytes is controlled by a protein kinase

cascade (termed the Mos-Mek-MAPK cascade) which is

activated by the hormone progesterone, and demonstrates

bistable behavior.(37,59,60) Treatment of immature oocytes with

progesterone causes sequential accumulation and/or activa-

tion of the kinases Mos, MEK, and p42 MAPK. The MAPK

promotes activation of the complex of cyclin B with the cyclin-

dependent kinase Cdc2, which in turn triggers maturation.

MAPK also stimulates Cdc2-mediated Mos accumulation;

therefore, the cascade is a multicomponent PFL. By probing

individual progesterone-treated oocytes, it was demon-

strated that a group of oocytes consisted of a maturating

subpopulation (high levels of phosphorylated MAPK kinase,

or MAPK-P) and a non-maturating subpopulation (with no

Figure 4. Schematic representations of distributional monomodality (A) and bimodality (B). Reporter signal intensity is measured for

every cell in a cell population. The signal intensity represents the number of molecules of a chemical species present in a single cell.
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detectable MAPK-P).(37) For low concentrations of progester-

one, the majority of the oocytes did not maturate, whereas high

progesterone caused most of the oocytes to maturate. For

intermediate concentrations of progesterone, the two sub-

populations had comparable size, but no oocyte had an

intermediate MAPK-P level. The presence of distinct coexist-

ing oocyte subpopulations reflects the normal logic of cell

fate determination: an oocyte should either maturate or not.

Notably, after the removal of progesterone, mature oocytes did

not de-mature, which is indicative of irreversible behavior.(59)

Inhibition of protein synthesis abrogated distributional

bimodality of MAPK-P levels and irreversibility of oocyte

maturation by disrupting the protein synthesis-dependent

multicomponent positive feedback loop.(59,70)

Eukaryotic cell cycle oscillations

Hysteretic behavior is an aspect of bistable systems with

particular significance for biochemical oscillations.(51,52) As an

inherent property of bistable systems, hysteresis can be used

to detect bistability. Thus, hysteresis was used to distinguish

between two alternative models of abrupt switching between

high and low Cdc2 activity levels in the course of mitosis in cell-

free X. laevis egg extracts.(53) The protein kinase Cdc2 is a key

player in mitosis. The activity of Cdc2 is modulated by another

protein, cyclin B, whose concentration oscillates as the cell

repeatedly goes through the phases of the cell cycle. The basic

mechanisms of Cdc2 activity control have been understood by

studying a system where the synthesis of endogenous cyclin B

was blocked, and a non-degradable cyclin B (Dcyclin B) was

used instead (which ensured constant total cyclin B lev-

els).(52,53,76) The Dcyclin B–Cdc2 system did not exhibit

sustained oscillations, but reached a steady state that

depended on the levels of Dcyclin B. Hysteretic behavior in

the Dcyclin B–Cdc2 system was predicted using a mathe-

matical model of the cell cycle.(62,77) Hysteresis implies that the

cyclin B level threshold to enter mitosis is higher than the

corresponding threshold to exit mitosis.(53,78) Experimental

measurements showed a notable difference between these

thresholds, thus confirming the hysteretic behavior of the

system;(52,53) similar results have been obtained for cell

cycle control in budding yeast.(34,79)

The role of a bistable circuit in mitosis control is efficient

toggling between two distinct states—interphase and early

mitosis—excluding the possibility of the cell resting in an

Figure 5. Schematics showing the steady-state signal–

response dependency for bistable and monostable systems.

A: Hysteresis in a bistable system. When the signal intensity is

less than S1 or greater than S2, there is only one stable steady

state; two stable steady states coexist when the signal intensity

is in the interval (S1, S2). Depending on the direction of change

in the signal intensity (indicated by the arrows), the system will

be characterized by different signal–response curves (red and

green). At S1 and S2, the system undergoes abrupt transitions

from the high response level state to the low response level

state and vice versa, respectively. B: Irreversibility in a bistable

system. At S1, the system undergoes an abrupt transition from

the low response level state to the high response level state.

However, when the signal intensity shifts from high to low, the

system remains in the high response level state. C: Sigmoidal

signal–response curve of a monostable system. Regardless

of the direction of change in the signal intensity, the signal–

response relationship is uniquely defined.
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intermediate state.(52,62) A central component of the mitosis

control system is the positive feedback loop in which the active

Cdc2–cyclin B complex inactivates its inhibitors, but there are

also other positive feedback loops and a negative feedback

loop in the system.(51,52,60) The circuit thus exemplifies a

regulatorydesign that promotes sustained oscillations through

a combination of positive and negative feedback.(51,52,60)

Oscillators of this type control a variety of cellular pro-

cesses(34,79–81) (including circadian cycles),(82–84) and pos-

sess advantageous features such as robustness, noise

resistance and synchronizability.(41,82,84,85)

Positive feedback in two-component signal

transduction systems

Two-component systems constitute the most prevalent form

of bacterial signal transduction.(86,87) A two-component signal

transduction system consists of two proteins, a sensor kinase

and a response regulator.(15) The sensor kinase is a trans-

membrane kinase (which can also display phosphatase

activity), and the response regulator is typically a transcription

factor. In response to an environmental signal, the sensor

kinase autophosphorylates from ATP and then transfers the

phosphoryl group to the response regulator. This increases

the ability of the regulator to bind DNA and modulate

gene expression. Besides eubacteria, two-component sys-

tems are found in archaea and some cell-wall-containing

eukaryotes.(15,88) Positive feedback is a frequent property of

two-component systems because many response regulators

activate their own expression.(17,22,89–92) There are several

functional roles of positive autoregulation in two-component

signal transduction, including the generation of activation

surges, transcriptional memory and hierarchical organization

of a regulon.

Insights into the possible roles of such regulation

were obtained in the studies of the two-component system

PhoP/PhoQ, which is a critical regulator of S. enterica

virulence.(17,93) The phoP and phoQ genes are parts of a

bi-cistronic operon, which is transcribed from a constitutive

promoter and from a PhoP-activated promoter; thus, the

expression of PhoP is regulated via a PFL. Shifting S. enterica

from repressing to inducing conditions for the PhoP/PhoQ

system results in a transcription surge: the mRNA levels of

PhoP-activated genes peak at 20–30 minutes upon activa-

tion, and then decrease to reach a steady state by	60 minutes

(Fig. 6).(17) This overshoot behavior is not due to PhoP

synthesis and subsequent decay because the total level of

PhoP increases monotonically upon activation. Temporal

changes in the PhoP-dependent mRNA levels reflect the

changes in the level of phosphorylated PhoP, which is also

characterized by a surge, and correlate with PhoP binding to

the promoters of PhoP-activated genes (Fig. 6). Although

positive autoregulation of the PhoP/PhoQ system is normally

required for the surge observed in wild-type Salmonella, a

surge has also been observed when the phoPQ operon was

expressed from a heterologous promoter.(17)

The autoregulation-dependent surge is essential for

S. enterica virulence, because the mutant strain with disrupted

PhoPautoregulation lost the ability to cause a lethal infection in

mice even though it produced the same steady-state levels

of PhoP-activated mRNAs as the strain with the wild-type

autoregulated promoter.(17) The transient increase in the PhoP

activity may allow the establishment of a new phenotypic

state, which enables the bacterium to react adequately to the

environment that triggered PhoP/PhoQ activation. The tran-

sition to this new state might be promoted by the expression of

PhoP-activated genes exceeding some threshold value at

their peak intensities. The steady-state expression levels

would then guarantee that the new phenotypic state is

maintained as long as the PhoP/PhoQ system is active.(17)

Transient surge-like activation patterns have also been

observed for several other two-component systems that

activate their own expression. These include the PmrA/PmrB

system of S. enterica,(17) the CusR/CusS(92) and KdpE/

KdpE(91) systems of E. coli, the VanR/VanS system of

Streptomyces coelicolor(90) and the ComE/ComD system of

Streptococcus pneumoniae,(89) which control different phys-

iological functions and include Gram-positive and Gram-

negative bacterial species. Thus, surge generation is not

limited to virulence activation in S. enterica and may

characterize a large class of positive feedback systems.

Positive autoregulation of the response regulator in a two-

component system can lead to ‘‘learning behavior’’ in gene

regulation.(94,95) Activation of an autoregulated system will

result in increased levels of the sensor kinase and response

regulator after the signal is removed. Thus, subsequent re-

activation of a system will be characterized by a shorter

activation time. This has been demonstrated for the PhoB/

PhoR system of E. coli,(95) where disruption of autoregulation

abolished the activation speed-up.(95) A similar phenomenon

of ‘‘galactose memory’’ has been reported for the yeast GAL

gene cluster, whose activation system contains PFLs.(96)

Transcriptional memory reflects the intrinsic activation delay

that characterizes positive feedback because the delays

are caused by the need to synthesize more regulator, pre-

synthesis of the regulator abolishes the delay.

The hierarchical organization of expression is also deter-

mined by activation delays, but here the delays correspond to

the activation times of different genes co-regulated by a given

system.(94) These activation times are defined by the locations

and affinities of the binding sites for the response regulator. As

a result of the differences in these promoter features, different

genes are activated at different regulator levels, which

leads to a temporal pattern of gene expression, such as the

one observed for the bvg virulence regulon of Bordetella

pertussis.(97) Indeed, elimination of autoregulation in the

BvgA/BvgS system leads to a serious disruption in the
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sequence of phenotypic states associated with the expression

pattern displayed by wild-type B. pertussis.(22)

Conclusions

Positive feedback is a general control principle frequently

encountered in the regulation of molecular processes in living

cells. It is found in both bacteria and eukaryotes organisms,

and controls diverse processes ranging from bacterial

virulence to eukaryotic cell fate determination. Positive feed-

back can be implemented at the level of transcriptional control,

as in bacterial two-component signal transduction, or at the

level of protein–protein interactions, as in the regulation of

eukaryotic cell cycle. The complexity of systems employing

positive feedback ranges from single one-component PFLs

to large systems containing multiple interacting PFLs and

NFLs.

The most-studied functional feature of positive feedback is

promotion of bistability together with the related properties of

hysteresis and heterogeneity of clonal cell populations. While,

in a number of situations, bistability appears to be a desirable

property, many positive feedback systems do not demonstrate

bistable (or quasi-bistable) behavior under usual circum-

stances. In such cases, possible biological roles of positive

feedback include efficient switching behavior, robustness in

the presence of noise, and tunability.

Bistability is essentially a steady-state property of regu-

latory systems. It is becoming increasingly clear that positive

feedback is crucial for intrinsically transient properties of

Figure 6. The positive feedback loop of the phoPQ operon is necessary for the surge in activity of the PhoP/PhoQ system in Salmonella

enterica. A: Schematic representation of the phoPQ promoter in two isogenic strains. One strain (top) harbors the wild-type P1 promoter,

which is positively autoregulated by the PhoP protein, and the constitutive P2 promoter. The other strain (bottom) harbors a consensus –35

hexameric sequence (red square) in place of the PhoP box (blue square). The black square indicates the ‘‘scar’’ sequence generated during

the construction of the strains. B: The levels of total PhoP protein in extracts from equivalent numbers of the wild-type (top) and mutant

(bottom) cells after switching from repressing (high Mg2þ) to inducing (low Mg2þ) conditions. The levels of promoter occupancy by the PhoP

protein (C) and mRNA expression (D) of the PhoP-activated mgtA and pmrD genes were determined in wild-type (blue) and mutant (red)

strains that were shifted from repressing to inducing conditions. (Reproduced from Ref. 17 with permission.)
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cellular control circuits, such as excitability and oscillations.

These properties are frequently found in multipart systems

with more than one feedback loop. However, even the simplest

single-PFL systems can display transient surge-like behavior

that is critical for such an important biological property as

bacterial virulence.

The significant roles played by positive feedback, together

with its ubiquity, make it one of the major functional elements of

regulatory pathways, along with negative feedback,(5,13,65)

feedforward control(19,98) and cascade-like regulation.(99,100)

Combinations of these elements often display qualities that

the separate components do not possess, thus providing

the foundation for the diversity of cellular control processes.

Understanding of the properties of PFLs and their interactions

with other regulatory elements will help to improve our ability to

predict the behavior of regulatory circuits in living cells and to

construct biomolecular systems with desired characteristics.
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