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The mathematical model of the genetic code

Unique solution: 1, 1, 2, 4, 7, 8

Matching the symmetries of the genetic code with those of the mathematical
representation allows to assign the 64 binary strings to the codons and integer number
from 0 to 23 to the amino acids.



Parity of the strings

Surprisingly,
the mathematical properties of the model have a counterpart on the genetic code.

The parity of a binary string, denoted as c1, is defined as the parity of its sum:

c1 =

(
6∑

i=1

di

)
mod 2; e.g. 1 1 0 0 0 1 has 3 ones → odd



Dichotomic classes: parity

� Each base — T,C,A,G — can be classified according to chemical classes:

{Purine; Pyrimidine} {R = A, G; Y = C, T }
{Keto; Amino} {K = T, G; M = A, C }
{Strong; Weak} {S = C, G; W = A, T }

� The parity of the strings can be described in terms of the biochemical properties
of the codons.



Dichotomic classes: Rumer’s class - 1

Discovered in the 60s by the Russian physicist Rumer.

� Green = degeneracy 4

� White = degeneracy ¬4.



Dichotomic classes: Rumer’s class - 2

� Also Rumer’s class can be derived with a similar algorithm. The first two bases of
the codons are involved.

� Rumer’s class can be derived from the parity of the first 5 digits of the string.



Dichotomic classes: hidden class

If we apply the same reasoning and shift the algorithm we obtain another class: the
hidden class

� The hidden class connects two adjacent codons.



Dichotomic classes and transformations

There are 3 + 1 possible global transformations of a codon:

from to class

KM T,C,A,G G,A,C,T Rumer
YR T,C,A,G C,T,G,A parity
SW T,C,A,G A,G,C,T hidden
I T,C,A,G T,C,A,G

Each transformation is antisymmetric w.r.t. a specific dichotomic class.



Dichotomic classes: a group framework

Denote the bases with the vector notation:

T′=
(
1000

)
C′=

(
0100

)
A′=

(
0010

)
G′=

(
0001

)
The transformations of the bases can be implemented by the usual matrix product
together with the following permutation matrices:

L=

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠M=

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠N=

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ I =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

{Γ, ∗}, where Γ = {L,M,N, I}, is an Abelian (commutative) group isomorphic to the
Klein V group (Z2 ⊗ Z2).

In fact, for each x , y , z ∈ Γ we have

1. I is the neutral element

2. x ∗ x = I (indeed, L,M,N, I are orthogonal);

3. x ∗ (y ∗ z) = (x ∗ y) ∗ z (associativity)

4. x ∗ y = y ∗ x = z (commutativity and closure)



Dichotomic classes as nonlinear operators

define the following matrices:

O1 =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
1 2 2 1
0 0 3 4

⎞
⎟⎟⎠ ; O2 =

⎛
⎜⎜⎝
0 0 0 0
1 2 1 2
0 4 3 0
0 0 0 0

⎞
⎟⎟⎠ ; O3 =

⎛
⎜⎜⎝
2 1 1 2
0 4 0 3
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

The classes c1 = parity, c2 = Rumer, c3 = hidden can be obtained as follows:

ci =
∥∥Oi � Q′∥∥

∞ mod 2 i = 1, 2, 3 (1)

where:

� Q is a 4× 4 matrix that represents 4 contiguous bases

� � denotes the matrix Hadamard product

� ‖Q‖∞ is the infinite order matrix norm for a m ×m square matrix Q:
‖Q‖∞ = max1�i�m

∑m
j=1 |qij |

The dichotomic classes ci are nonlinear functions of Q



Dichotomic classes: an example of coding

Given the sequence

TCA GGT AAG GGC

we have three possible reading frames:

frame 0 TCA GGT AAG GGC
frame 1 CA GGT AAG GGC
frame 2 A GGT AAG GGC

below we compute the parity on the frame 1 sequence and Rumer’s class in frame:

The same analysis can be applied to the complementary reversed sequence

GCC CTT ACC TGA



Error correction and time series

� Redundancy and parity coding are the main ingredients of man made error
detection and correction systems;

� The existence of a coding mechanism for error correction/detection implies some
kind of dependence inside data;

� If all the genetic information share a common error correction machinery this
should imply the emergence of common structures.

� Several studies have highlighted the presence of fractal long-range correlations in
nucleotide sequences.

� However, error detection and correction should act at a local level.

From a time series perspective this poses several issues:

1. Are there such (universal) correlations that can be found in every sequence?

2. Is the mathematical structure playing a role?



Dichotomic classes and dependence

Is there a dependence structure in the dichotomic classes?

Given two sequences Xt and Yt we have:{
H0 : Xt and Yt+k are independent

H1 : Xt and Yt+k are not independent
for k ∈ Z

Problem: build a valid test. We need:

� A suitable measure of dependence;

� A scheme for testing H0 by taking into account repeated testing issues.



A cross entropy metric

We use a normalized version of the Bhattacharya-Hellinger-Matusita distance:

Sρ(k)=
1

2

∫∫ [√
f(Xt ,Yt+k )

(x , y)−
√

fXt (x)fYt+k
(y)

]2
dxdy

� fXt (x) pdf of Xt ;

� fYt+k
(y) pdf of Yt+k ;

� f(Xt ,Yt+k )
(x , y) joint pdf of (Xt ,Yt+k );

� Reduces to a measure of serial dependence if Yt = Xt ;

� Sρ(k) possesses many desirable theoretical properties;



The testing scheme

Issues

� The dichotomic classes are naturally correlated because they can be computed on
the same bases.

� Spurious correlations due to nonstationarity/different GC content.

Because of such issues simple nonparametric bootstrap schemes that resample the
binary sequences are not appropriate.

Solution: a modified permutation scheme
Given a nucleotide sequence Zt

1. on Zt compute the two dichotomic classes Xt and Yt

2. compute the measure on Xt and Yt+k : Ŝk

3. draw Z∗
t , a random permutation of Zt

4. on Z∗
t compute the two dichotomic classes X∗

t and Y ∗
t

5. compute the measure on X∗
t and Y ∗

t+k : Ŝ∗
k

6. repeat steps 3 – 5 B times.

7. compare Ŝk with the quantiles of the distribution of Ŝ∗
k .



The single test case

We wish to test a single null hypothesis H0.
We set the significance level α and reject H0 if the p-value of the test is smaller than
α.

Test
H0 H1

Truth H0 1− α α 1
H1 β 1− β 1

� α = P(reject H0|H0 is true ) Type I error

� β = P(accept H0|H0 is false ) Type II error



The multiple test case

We wish to test N null hypotheses H0i , i = 1 . . . ,N.
N can be of the order of tens of thousands.

Test
H0 H1

Truth H0 N0 − a a N0

H1 N1 − b b N1

N − R R N

� Of the N0 null cases a are rejected incorrectly (false discoveries);

� Of the N1 non-null cases b are rejected correctly (true discoveries);

� a/R is the false discovery proportion;

Solutions:

� Bonferroni bound: controls FWER:

FWER = P(reject any true H0i ) = P(a > 0)

� Benjamini and Hochberg prodcedure: controls Fdp

E(Fdp) = E
( a

R

)



The multiple test case - 2

1. Bonferroni bound: given a significance level α reject those hypotheses for which:

pi ≤ α/N

A theorem assures that FWER ≤ α. Problem: too conservative.

2. Benjamini and Hochberg’s FDR control algorithm BH(q):
� we have a decision rule that produces a p-value pi for each test, i = 1, . . . ,N.
� If H0i is true then: pi ∼ U(0, 1)
� order the p-values:

p(1) ≤ p(2) ≤ · · · ≤ p(i) ≤ · · · ≤ p(N)

� for a fixed value of q ∈ (0, 1) let imax the largest index for which

p(i) ≤
i

N
q (2)

reject H0i if i ≤ imax
� Under the hypothesis of independence of the p-values we have:

E(Fdp) = π0q ≤ q

where π0 = N0/N



The empirical Bayes interpretation of the BH(q) procedure
Consider the p-values pi , i = 1, . . . ,N:

pi = F0(zi ) left tail (3)

pi = 1− F0(zi ) right tail (4)

where F0(zi ) is the cdf under the null. In our case F0 is U(0, 1) so that pi = zi .
Order the z-values:

z(1) ≤ z(2) ≤ · · · ≤ z(i) ≤ · · · ≤ z(N)

Note that the empirical cdf satisfies:

F̄ (z(i)) = i/N

We can write the BH rule (2) as

F0(z(i))

F (z(i))
≤ q (5)

Fdr(z(i)) = π0

F0(z(i))

F (z(i))
≤ π0q (6)

The BH rule can be rewritten as follows: reject Hi if zi > zmax where

zmax = sup
z

{
Fdr(z) < q

}
(7)



The dataset: KOGs clusters of predicted orthologs

We have analyzed 458 KOG sequences for each of the six genomes. KOGs are clusters
of predicted orthologs (eukaryotic orthologous groups).

In other words, sequences of different species associated to the same KOG are
functionally homologous.

Table: Classes of organisms analysed. The third column reports the number of kilobases (kb) of
each class.

Organism kb
1 Homo sapiens 553.901
2 Drosophila melanogaster 557.970
3 Arabidopsis thaliana 561.582
4 C. elegans 552.873
5 Saccharomyces cerevisiae 564.831
6 Schizosaccharomyces pombe 551.130

We have grouped the data

� by KOG → 458 sequences of average length 7.3 kb.



The dataset: some notation

For each sequence we have 18 dichotomic classes in the 3 reading frames.

Table: Legend

class frame anticodon

p = parity frame 0 a = reversed complement
r = Rumer frame 1
h = hidden frame 2

Example: the combination p1-r0

� p1-r0 at lag 0 involves bases 34 and 12

� p1-r0 at lag 1 involves bases 34 and 56

� p1-r0 at lag -1 involves bases 67 and 12



Results: bivariate (cross entropy)
� we set q = 0.01. Is the estimate of the Bayes probability that a rejected null is is

actually null.
� The number of valid combinations of dichotomic classes is 153.
� The lags tested are three: −1, 0, 1
� overall, we have N = 153× 3× 458 = 210222 simultaneous tests.
� B = 5000 bootstrap replications.

Plot of the estimated Fdr vs p-values
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� BH(q) threshold p-values: 0.001 (right tail) and 0.0004 (left tail)
� Independence of the tests is not required and affects only the accuracy of the

estimation of the Fdr. Fdr is still an unbiased estimator of Fdr(z).



Results: bivariate (cross entropy) – right tail rejections

� Percentages of rejections over the 458 KOG sequences.

lags

cnames -1 0 1

h0a-h2a 76.4 16.6 1.3

p0a-p2 69.2 2.0 3.9

h0-h1a 7.2 69.4 3.1

h0-p1 3.7 88.4 1.3

h0-r2a 7.4 93.2 2.0

h0a-h1a 9.0 63.8 2.4

h0a-r1 2.0 97.4 29.5

h1-h2 2.2 66.6 1.5

h1a-p1 3.3 84.5 2.0

h1a-p2 2.8 83.8 2.6

lags

cnames -1 0 1

h1a-r2a 6.3 88.6 5.0

h2-h2a 1.3 87.3 1.7

p0-p0a 2.4 62.0 1.3

p1-r2a 7.2 97.4 2.2

r1-r1a 7.2 80.6 0.9

h1-r0 4.1 5.9 61.6

h1-r1 0.9 1.7 86.5

h2-r1 0.4 1.7 97.8

h2a-r1 1.5 0.7 64.0

h2a-r1a 1.3 24.7 86.5



Results: bivariate (cross entropy) – right tail rejections 2

� Example:

h0-h1a at lag 0
involves bases 34 and 5’6’

$�3506�

0 1

0 20.3 23.2

1 25.6 30.9

$�1596�

0 1

0 25.7 34.7

1 21.5 18.2

$�1758�

0 1

0 35.2 23.3

1 24.4 17.0

p1-r2a at lag 0
involves bases 34 and 3’4’

$�1727�

0 1

0 24.2 31.9

1 29.3 14.6

$�3449�

0 1

0 29.0 37.7

1 21.8 11.4

$�1762�

0 1

0 26.6 39.4

1 22.5 11.5



More random than random? (1)

Two binary random variables X and Y are stochastically independent iff:

P(X ,Y ) = P(X )P(Y ) or P(Y |X ) = P(X )

Y
0 1

X 0 p0|0 p1|0 1
1 p0|1 p1|1 1

p0 p1 1

� where pi|j = P(Y = i |X = j)

� Independence implies that pi|0 = pi|1 = pi , that is the conditional distributions by
row are equal



More random than random? (2) – left tail rejections

� Percentages of rejections over the 458 KOG sequences.

lags

cnames -1 0 1

p0a-r1a 65.7 0.0 0.0

p0a-r2a 86.7 0.2 0.0

r0-r1a 64.6 0.0 0.0

h0-p2a 0.0 84.9 0.0

h0a-p1 0.0 97.2 0.0

h1-p2 0.0 88.4 0.0

h2a-p2 0.0 63.5 0.0

p0-r1 0.0 77.5 0.0

p1-p1a 0.2 78.6 0.0

p1a-r1 0.0 71.4 0.2

p2-r2a 0.0 83.8 0.0

r0a-r1 0.0 62.2 0.0

r1-r2 0.0 60.5 0.0

h1-p0a 0.0 0.2 65.7

h1a-r0 0.0 0.0 75.5

h2-p1 0.0 0.0 68.1

h2-r0a 0.0 0.0 74.0

h2a-p0 0.2 0.2 77.1

p2-r0a 0.0 0.0 85.4

h0a-p1 at lag 0
involves bases 34 and 3’4’

$�0729�

0 1

0 51.2 48.8

1 51.2 48.8

$�2309�

0 1

0 55.4 44.6

1 55.4 44.6

$�0556�

0 1

0 51.8 48.2

1 51.8 48.2



More random than random? (3): an example on gene 0729
h0a-p1 at lag 0 – involves bases 34 and 3’4’ Original sequence

0 1 Sum

0 51.2 48.8 100.0

1 51.2 48.8 100.0

X-squared p.value

0 1

Randomly permuted sequence

0 1 Sum

0 60.7 39.3 100.0

1 36.4 63.6 100.0

X-squared p.value

1.53e+02 3.09e-35

Random synonymous sequence with the same codon usage

0 1 Sum

0 56.5 43.5 100.0

1 48.5 51.5 100.0

X-squared p.value

1.58e+01 6.99e-05



More random than random? Discussion

Distribution of Sρ under H0:

Sρ
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6

� Right tail rejection implies correlation → local
structure

� Left tail rejection implies the existence of a global
optimization structure

� At positions 34 and 3’4’we have that at the same
time the parity class:

� is maximally correlated with Rumer’s class
� is minimally correlated with the hidden class.

� Signals with low correlation play an important role
in Communication Theory.

� The notions of resilency and correlation immunity
might be relevant here.
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Press coverage

A newspaper article based on our research has been selected by the Atomium Culture
consortium (http://atomiumculture.eu) and has been published on the following
European newspapers:

� Italy: Il Sole 24 Ore
http://www.atomium-culture.ilsole24ore.com/?p=10

� Spain: El Pais
http://www.elpais.com/articulo/sociedad/Counting/on/the/Tree/of/Life/elpepusoc/20110726elpepusoc_13/Tes

� Germany: Frankfurter Allgemeine Zeitung
http://www.faz.net/artikel/C31277/mehrdeutige-nummern-in-der-dna-das-leben-kann-zaehlen-30331235.html

� Austria: Der Standard
http://derstandard.at/1285199352166/Counting-on-the-Tree-of-Life

� Ireland: Irish Times
http://195.7.33.36/newspaper/atomium/2010/2010121335.html

� Poland: Rzeczpospolita
http://www.rp.pl/artykul/567922.html


