A mathematical model of the genetic code the origin of protein coding, and genetic code conservation

Diego L. Gonzalez

CNR-IMM Istituto per la Microelettronica e i Microsistemi

MM

Dipartimento di Statistica Università di Bologna

ALMA MATER STUDIORUN Università di Bologna

Genetic Code Conservation - First International Conference in Code Biology, Paris,

20-24 May 2014

Biological Codes

- **Biological codes** are *the great invariants* of *life*, the sole entities that have been **conserved** in evolution while everything else has changed, *Barbieri*, 2014.
- What has been conserved in biological codes?
- Adaptors, in short, are the key molecules in all organic codes. They are the molecular fingerprints of the codes. ... It is one of those facts that have extraordinary theoretical implications
- If adaptors are the key molecules, the origin of the codes should be described by the properties of the adaptors?
- In biology, conserved quantities are related to relevant biological functions; in physics conserved quantities are a consequence of **symmetry**. In a physical paradigm, symmetry is our first ingredient in the search for conserved quantities in biological codes.

Degeneracy

 Focusing on the genetic code: is it possible to construct a model of the genetic code based on adaptors and through this model is it possible to study conserved quantities?

What is degeneracy?

Degeneracy is a concept that comes from quantum mechanics. It refers to the fact that the same total energy can characterize more that one different quantum-state. By analogy we say that an amino acid is degenerate because it is associated to more than one different codon.

Degeneracy is the main mathematical property of the genetic code

The Genetic Code as a Mapping

64 codons; 4x4x4 = 64 (Words of three letters from an alphabet of four, i.e., A, T, C, G)
20 amino acids + Stop codon (Methyonine represents also the synthesis start signal)

Redundancy and Degeneracy follow

Degeneracy Distribution of the Nuclear Euplotes Genetic Code

			Secon	d letter			
		U	С	А	G		
	U	UUU UUC UUA UUA Leu	UCU UCC UCA UCG	UAU UAC Tyr UAA Stop UAG Stop	UGU UGC UGA UGG Trp	U C A G	
letter	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG Gin	CGU CGC CGA CGG		Third
First	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGG Arg	U C A G	letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG Glu	GGU GGC GGA GGG	UCAG	

Degeneracy distribution inside quartets

Degeneracy	# of amino acids
4	8
3	2
2	12
1	2

Euplotes nuclear genetic code

Mathematical Modelling of the Genetic Code

•In the last years we have developed a mathematical model of the genetic code that explains the degeneracy distribution of both variants of the genetic code, nuclear and mitochondrial.

•The model is based on number representation systems. Numbers are usually represented in an univocal way: any number has only one representation and any representation corresponds to only one number.

•This is the case, for example, of the common decimal representation system. This univocity is due to the characteristics of the positional values and digits used in the so called power numeration systems (because the positional values of the representation correspond to the powers of a given base, i.e., 10 in the decimal system).

•As the genetic code is degenerate and redundant we are interested in non-univocal representation systems

Mathematical model: integer number representation systems

Redundant representation systems

Non-power redundant representation systems

Fibonacci's non-power representation system

													Bi	na	ry	St	rin	gs												
Bases	8	5	3	2	1	1	8	5	3	2	1	1	8	5	3	2	1	1	8	5	3	2	1	1	8	5	3	2	1	1
Number																						c.,								Γ
0	0	0	0	0	0	0									1															Γ
1	0	0	0	0	0	1	0	0	0	0	1	0										Ť,								Γ
2	0	0	0	1	0	0	0	0	0	0	1	1																		Γ
3	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	1	0	1												Γ
4	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	1	1												T
5	0	1	0	0	0	0	0	0	1	1	0	0	0	0	1	0	1	1												Г
6	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	1	1	0	0	0	1	1	0	1						T
7	0	1	0	1	0	0	0	1	0	0	1	1	0	0	1	1	1	1												t
8	1	0	0	0	0	0	0	I	1	0	0	0	0	1	0	1	1	0	0	1	0	1	0	1						t
9	1	0	0	0	1	0	1	0	0	0	0	1	0	1	1	0	1	0	0	1	1	0	0	1	0	1	0	1	1	t
10	1	0	0	1	0	0	1	0	0	0	1	1	0	1	1	1	0	0	0	1	1	0	1	1						Г
11	0	1	1	1	0	1	0	1	1	1	1	0	1	0	0	1	0	1	1	0	0	1	1	0	1	0	1	0	0	
12	0	1	1	1	1	1	1	0	0	1	1	1	1	0	1	0	0	1	1	0	1	0	1	0						Г
13	1	0	1	0	1	1	1	0	1	1	0	0	1	1	0	0	0	0												t
14	1	0	1	1	0	1	1	0	1	1	1	0	1	1	0	0	0	1	1	1	0	0	1	0						t
15	1	0	1	1	1	1	1	1	0	0	1	1	1	1	0	1	0	0												t
16	1	1	0	1	0	1	1	1	0	1	T	0	1	1	- 1	0	0	0												t
17	1	1	0	1	1	1	1	1	1	0	0	1	1	1	1	0	1	0												t
18	1	1	1	0	1	1	1	1	1	1	0	0				Printing														t
19	1	1	1	1	1	0	1	1	1	1	0	1																		t
20	1	1	1	1	1	1																								t

Degeneracy	Number
Signed	Binary
1	5
2	3
3	4
4	2
5	2
Fibonacc	i System
1	2
2	4
3	8
4	5
5	2
Genetic	c Code
1	2
2	12
3	2
4	8

Is there a redundant representation describing the degeneracy distribution of the genetic code?

Non-power representation system 1,1,2,4,7,8

Represented number											L	en	gt	h (5 k	oin	ar	ys	str	in	gs										Degenera Non-power re	cy (pre	distribution sentation system
	8	7	' .	4	2			1		8	7	4	2	1		1	1	8	7	4	2	1	1	-	8	7	4	2	1	1	1,	1,2,4	4,7,8
0	0	0		0	0			0		•	0								_		<u> </u>			_							# of integer		Dagamanaar
	0	U		U	0				_	0	U						+	+	_		┝			-	-			┢	+	\vdash	numbers		Degeneracy
2	 0	U	<u>'</u>	U	0			1		0	U						_	_						_				_	_	_	2		1
3	 U	U	1	U	1					U	U	U	1	. 1			_							_				_			12		2
4	0	O	2	1	0			U	_	0	0	0	1	. 1		1															12		<u> </u>
5	0	0		1	0			1		0	0	1		1		D															2		3
6	0	0		1	1		D	0		0	0	1	0	1	L :	1															8		4
7	0	0		1	1		D	1		0	0	1	1	. 1		D		0	1	0	0	0	0										
8	0	1	. 1	0	0		D :	1		0	1	0	0) 1		D		1	0	0	0	0	0		0	0	1	1	. 1	1	Unique sol	ıti/	on 1 1 2 4 7
9	1	0		0	0		D	1		1	0	0	0) 1		D	-	0	1	0	1	0	0		0	1	0	0) 1	1	onique son		on 1,1,2,4,1,
10	0	1		0	1		D [:	1		0	1	0	1	. 1		D		1	0	0	1	0	0		1	0	0	0) 1	1			
11	1	0		0	1		D	1		1	0	0	1	. 1	L	D	1	0	1	1	0	0	0		0	1	0	1	. 1	1			
12	0	1		1	0		D [1		0	1	1	0) 1		D	1	1	0	1	0	0	0		1	0	0	1	. 1	1			
13	1	0		1	0		D	1		1	0	1	0) 1		D	-	0	1	1	1	0	0		0	1	1	0) 1	1			
14	0	1	Ī	1	1	1	D	1		0	1	1	1	. 1		D		1	0	1	1	0	0)	1	0	1	0) 1	1			
15	1	0	1	1	1		D	1		1	0	1	1	. 1		D		1	1	0	0	0	0		0	1	1	1	1	1	Degenera	су	distribution
16	1	1		0	0		D	1		1	1	0	0	1		D		1	0	1	1	1	1	_				Γ			Euplotes nu	clea	ar genetic code
17	1	1	Ţ	0	0			1		1	1	0	1			D	╈											F	T		<i>щ</i> .с	1_	Decement
18	1	1		0	1	1	D	1		1	1	0	1	. 1		D												1	T			IS	Degeneracy
19	1	1	1	1	0			1		1	1	0	1	1		1								T				T	T		2		1
20	1	1		1	0		D	1		1	1	1	0) 1		D															12		2
21	1	1		1	1		D	0		1	1	1	0) 1		1															2		2
22	1	1		1	1		D	1		1	1	1	1	. 1		D															2		J
23	1	1	T	1	1	1	1	1																							8		4

From a structural isomorphism to a true model

The Model of the Euplotes Nuclear Genetic Code

		U			С			Α			G		
	1	000001	Phe	15	101101	Ser	18	110110	Tyr	16	110010	Cys	U
TT	1	000010	Phe	15	101110	Ser	18	110101	Tyr	16	110001	Cys	С
U	4	001000	Leu	15	011111	Ser	2	000100	Ter	16	101111	Cys	Α
	11	011000	Leu	15	110000	Ser	2	000011	Ter	23	111111	Trp	G
										1.18			
	11	100101	Leu	14	011110	Pro	3	000101	His	12	011010	Arg	U
C	11	100110	Leu	14	011101	Pro	3	000110	His	12	011001	Arg	С
C	4	000111	Leu	14	101100	Pro	17	110100	Gln	19	111000	Arg	Α
	11	010111	Leu	14	101011	Pro	17	110011	Gln	12	101000	Arg	G
												2	
	7	001101	Ile	8	010010	Thr	5	001001	Asn	22	111110	Ser	U
	7	001110	Ile	8	010001	Thr	5	001010	Asn	22	111101	Ser	С
Α	7	010000	Ile	8	100000	Thr	21	111011	Lys	19	110111	Arg	Α
	0	000000	Met	8	001111	Thr	21	111100	Lys	12	100111	Arg	G
	13	101001	Val	9	100001	Ala	20	111010	Asp	10	010110	Gly	U
C	13	101010	Val	9	100010	Ala	20	111001	Asp	10	010101	Gly	С
G	13	011100	Val	9	010011	Ala	6	001011	Glu	10	100011	Gly	Α
	13	011011	Val	9	010100	Ala	6	001100	Glu	10	100100	Gly	G

"Can the genetic code be mathematically described?", Diego L. Gonzalez, Medical Science Monitor, v.10, n.4, HY11-17 (2004). "The Mathematical Structure of the Genetic Code" D.L. Gonzalez, The Codes of Life, M.. Barbieri Editor, Springer Verlag (2008)

Genetic Code Conservation - First International Conference in Code Biology, Paris,

20-24 May 2014

Symmetry of U $\leftarrow \rightarrow$ C exchange

NNU and NNC codify the same amino acid

16 pairs of codons NNU - NNC

		ι ι	J	C	5		4	C	3	
INC		Pho	w		UCU	Ъr	UAU		UGU	U
ame		FIRE	uuc	Sor	UCC	iyi	UAC	Cys	UGC	С
	U	Lau	AUU	5	UCA	Ston	UAA		UGA	Α
		Leu	UUG		UCG	Sup	UAG	Тгр	UGG	G
codons			CUU		CCU	Lie	CAU		CGU	U
			CUC	Due	222		CAC	A	CGC	С
,	С	Leu	CUA	PTO	CCA	a -	CAA	Arg	CGA	Α
			CUG		ccc	Gin	CAG		CGG	G
			AUU		ACU	A a a	AAU	Corr	AGU	U
		lle	AUC	The	ACC	Asn	AAC	Ser	AGC	С
	Α		AUA		ACA		AAA	A	AGA	Α
		Met	AUG		ACG	Lys	AAG	Alg	AGG	G
			GUU		GCU	Aon	GAU		GGU	U
	_	16	GUC	Ale	339	Asp	GAC	Ch/	GGC	С
	G	Vai	GUA	Ala	GCA	Ch.	GAA	Gy	GGA	Α
			GUG		GCG	Giu	GAG		GGG	G

Common to all known versions of the genetic code

Symmetry of U $\leftarrow \rightarrow$ C exchange

NNU and NNC codify the same amino acid

16 pairs of codons NNU - NNC

		ι	J		5		1		3	
NC		Pho	w		UCU	Tur	UAU		UGU	U
ame		THE	UUC	Sor	UCC	iyi	UAC	Cys	UGC	С
	U	Lou	AUU	56	UCA	Ston	UAA		UGA	Α
		Leu	UUG		UCG	Stop	UAG	Тгр	UGG	G
codons			ຒ		ccυ	Hie	CAU		CGU	U
	_	Lau	CUC	Due	CCC		CAC	Array	CGC	С
	С	Leu	CUA	FIU	CCA	a	CAA	Aig	CGA	Α
			CUG		CCG	Gill	CAG		CGG	G
			AUU		ACU	Acn	AAU	Sor	AGU	U
	_	lle	AUC	Thr	ACC	ASH	AAC	Ser	AGC	С
	Α		AUA		ACA	he	AAA	٨٣٩	AGA	Α
		Met	AUG		ACG	цъ	AAG	лıy	AGG	G
			GUU		CCU	Asp	GAU		GGU	U
		\/al	GUC	Ala	GCC	Asp	GAC	Ghy	GGC	С
	G	vai	GUA	Ald	GCA	Gu	GAA	Gly	GGA	Α
			GUG		GCG	Giù	GAG		GGG	G

Common to all known versions of the genetic code

Non-power representation system 1,1,2,4,7,8

Represented number											L	en	gt	h (5 k	oin	ar	ys	str	in	gs										Degenera Non-power re	cy (pre	distribution sentation system
	8	7	'	4	2			1		8	7	4	2	1		1	1	8	7	4	2	1	1	-	8	7	4	2	1	1	1,	1,2,4	4,7,8
0	0	0		0	0			0		•	0								_		<u> </u>			_							# of integer		Dagamanaar
	0	U		U	0				_	0	U						+	+	_		┝			-	-			┝	+	\vdash	numbers		Degeneracy
2	 0	U	<u> </u>	U	0			1		0	U						_	_						_				_	_	_	2		1
3	 U	U	1	U	1					U	U	U	1	. 1			_							_				_			12		2
4	0	O	2	1	0			U	_	0	0	0	1	. 1		1															12		<u> </u>
5	0	0		1	0			1		0	0	1		1		D															2		3
6	0	0		1	1		D	0		0	0	1	0	1	L :	1															8		4
7	0	0		1	1		D	1		0	0	1	1	. 1		D		0	1	0	0	0	0										
8	0	1	. 1	0	0		D :	1		0	1	0	0) 1		D		1	0	0	0	0	0		0	0	1	1	. 1	1	Unique sol	ıti/	on 1 1 2 4 7
9	1	0		0	0		D	1		1	0	0	0) 1		D	-	0	1	0	1	0	0		0	1	0	0) 1	1	onique son		on 1,1,2,4,1,
10	0	1		0	1		D [:	1		0	1	0	1	. 1		D		1	0	0	1	0	0		1	0	0	0) 1	1			
11	1	0		0	1		D	1		1	0	0	1	. 1	L	D	1	0	1	1	0	0	0		0	1	0	1	. 1	1			
12	0	1		1	0		D [1		0	1	1	0) 1		D	1	1	0	1	0	0	0		1	0	0	1	. 1	1			
13	1	0		1	0		D	1		1	0	1	0) 1		D	-	0	1	1	1	0	0		0	1	1	0) 1	1			
14	0	1	Ī	1	1	1	D	1		0	1	1	1	. 1		D		1	0	1	1	0	0)	1	0	1	0) 1	1			
15	1	0	1	1	1		D	1		1	0	1	1	. 1		D		1	1	0	0	0	0		0	1	1	1	1	1	Degenera	су	distribution
16	1	1		0	0		D	1		1	1	0	0	1		D		1	0	1	1	1	1	_				Γ			Euplotes nu	clea	ar genetic code
17	1	1	t	0	0			1		1	1	0	1			D	╈											F	T		<i>щ</i> .с	1_	Decement
18	1	1		0	1	1	D	1		1	1	0	1	. 1		D												T	T			IS	Degeneracy
19	1	1	t	1	0			1		1	1	0	1	1		1								T				T	T		2		1
20	1	1		1	0		D	1		1	1	1	0) 1		D															12		2
21	1	1		1	1		D	0		1	1	1	0) 1		1															2		2
22	1	1		1	1		D	1		1	1	1	1	. 1		D															2		J
23	1	1	T	1	1	1	1	1																							8		4

Symmetry of xxxx01 $\leftarrow \rightarrow$ xxxx10 exchange

Represented number										L	.e	ng	j th	1 6	k	oin	ar	y	str	'n	gs	-								-		xxxx01 and
	1	B	7	4	2	2	1	1	8	7	1	4	2	1		1		8	7	4	2	1	1		8	3	7	4	2	1	1	vvvv10 codify
0		D	0	0	0		0	0																								
1	(0	0	0	C)	0	1	0	0		D	0	1	1	0																the same
2	(D	0	0	0)	1	1	0	0		D	1	0		0																integer
3		0	0	0	1	L	0	1	0	0		D	1	1		0																number
4	(D	0	1	0		0	0	0	0		D	1	1		1																namber
5		0	0	1	C)	0	1	0	0) :	1	0	1	1	0																
6		D	0	1	1	Ľ	0	0	0	0) :	1	0	1		1																16 pairs of strings
7		0	0	1	1	L	0	1	0	0) :	1	1	1		0		0	1	0	0	0	0									xxxx01 - xxxx10
8	(0	1	0	C)	0	1	0	1		D	0	1	1	0		1	0	0	0	0	0		0		D	1	1	1	1	
9		1	0	0	C)	0	1	1	0		D	0	1		0		0	1	0	1	0	0		0) 1	1	0	0	1	1	
10		0	1	0	1	L	0	1	0	1		D	1	1	(0		1	0	0	1	0	0		1		D	0	0	1	1	
11	1	1	0	0	1	L	0	1	1	0		D	1	1	1	0		0	1	1	0	0	0		0) 1	1	0	1	1	1	
12		0	1	1	C)	0	1	0	1		1	0	1	(0		1	0	1	0	0	0		1		D	0	1	1	1	
13	1	1	0	1	C)	0	1	1	0) :	1	0	1		0		0	1	1	1	0	0		0) 1	1	1	0	1	1	
14		0	1	1	1	L	0	1	0	1		1	1	1	0	0		1	0	1	1	0	0		1		D	1	0	1	1	
15		1	0	1	1	L	0	1	1	0) :	1	1	1	(0		1	1	0	0	0	0		0) 1	1	1	1	1	1	
16		1	1	0	C)	0	1	1	1		D	0	1	1	0		1	0	1	1	1	1	-								
17		1	1	0	0)	1	1	1	1		D	1	0	(0																
18		1	1	0	1	L	0	1	1	1		D	1	1	0	0																
19		1	1	1	0		1	1	1	1		D	1	1		1																
20		1	1	1	C)	0	1	1	1		1	0	1	(0																
21	1	1	1	1	1	L	0	0	1	1		1	0	1		1																
22		1	1	1	1	L	0	1	1	1		1	1	1	1	0																
23		1	1	1	1		1	1			T																					

Symmetry of xxxx01 $\leftarrow \rightarrow$ xxxx10 exchange

Represented number											L	en	gt	h	6	bi	ina	ry	st	rir	nge	5									xxxx01 and
	8	3 '	7	4	2	1	. 1		8	3	7	4	2		1	1		8	7	4	2	: 1	1	1	8	7	4	2	1	1	xxxx10 codify
0	() (0	0	0	0	0																								
1	() (0	0	0	0) 1)	0	0	0		1	0															the same
2	() (0	0	0	1	. 1)	0	0	1		0	0															integer
3	() (0	0	1	0) 1)	0	0	1		1	0															number
4	() (0	1	0	0	0)	0	0	1	-	1	1															
5	()	0	1	0) 1)	0	1	0		1	0															
6	() (0	1	1	0	0)	0	1	0) :	1	1															16 pairs of strings
7	()	0	1	1	0) 1)	0	1	1		1	0		0	1	0	0		D	0							xxxx01 - xxxx10
8	()	1	0	0	0) 1			ן	1	0	0		1	0		1	0	0	0		D	0	0	0	1	1	1	1	
9	1	Ľ	0	0	0	0) 1		1	L	0	0	0		1	0		0	1	0	1		D	0	0	1	0	0	1	1	
10	()	1	0	1	0	1)	1	0	1		1	0		1	0	0	1	. [(D	0	1	0	0	0	1	1	
11	1	Ľ	0	0	1	0) 1		1	L	0	0	1		1	0		0	1	. 1	. 0		D	0	0	1	0	1	1	1	
12	()	1	1	0	0	1)	1	1	0		1	0		1	0) 1	. 0		D	0	1	0	0	1	1	1	
13	1	Ľ	0	1	0	0) 1		1	1	0	1	0		1	0		0	1	1	1	. [(D	0	0	1	1	0	1	1	
14	()	1	1	1	0) 1		()	1	1	1		1	0		1	0) 1	. 1	. (D	0	1	0	1	0	1	1	
15	1	Ľ	0	1	1	0) 1		1	L	0	1	1		1	0		1	1	0	0		D	0	0	1	1	1	1	1	
16	1	<u>ו</u>	1	0	0	0) 1		1	1	1	0	0		1	0		1	0) 1	. 1	. 1	L	1							
17	1	<u>ו</u>	1	0	0	1	. 1		1	L	1	0	1		0	0															
18	1		1	0	1	0) 1		1	1	1	0	1		1	0															
19	1	Ľ	1	1	0	1	. 1		1	L	1	0	1	-	1	1															
20	1		1	1	0	0) 1		1	1	1	1	0		1	0															
21	1		1	1	1	0	0)	1	L	1	1	0)	1	1															
22	1		1	1	1	0) 1		1	1	1	1	1		1	0															
23	1		1	1	1	1	1																	T							

Parity Coding

The parity of the strings can be described in terms of biochemical properties

		U			С			Α			G		
	1	000001	Phe	15	101101	Ser	18	110110	Tyr	16	110010	Cys	U
TT	1	000010	Phe	15	101110	Ser	18	110101	Tyr	16	110001	Cys	С
U	4	001000	Leu	15	011111	Ser	2	000100	Ter	16	101111	Cys	Α
	11	011000	Leu	15	110000	Ser	2	000011	Ter	23	111111	Trp	G
									Ę.	1.1			
	11	100101	Leu	14	011110	Pro	3	000101	His	12	011010	Arg	U
6	11	100110	Leu	14	011101	Pro	3	000110	His	12	011001	Arg	С
С	4	000111	Leu	14	101100	Pro	17	110100	Gln	19	111000	Arg	Α
	11	010111	Leu	14	101011	Pro	17	110011	Gln	12	101000	Arg	G
	7	001101	Пе	8	010010	Thr	5	001001	Asn	22	111110	Ser	U
	7	001110	Пе	8	010001	Thr	5	001010	Asn	22	111101	Ser	С
Α	7	010000	Пе	8	100000	Thr	21	111011	Lys	19	110111	Arg	Α
	0	000000	Met	8	001111	Thr	21	111100	Lys	12	100111	Arg	G
	13	101001	Val	9	100001	Ala	20	111010	Asp	10	010110	Gly	U
C	13	101010	Val	9	100010	Ala	20	111001	Asp	10	010101	Gly	С
G	13	011100	Val	9	010011	Ala	6	001011	Glu	10	100011	Gly	Α
	13	011011	Val	9	010100	Ala	6	001100	Glu	10	100100	Gly	G

Parity of a string = parity of the # of 1's, i.e., 0,1,1,0,1,0 = odd string **The complete set of parity rules:**

Codons ending in A are odd (grey boxes); codons ending in G are even (white boxes)

Codons ending in T or C are odd if the second letter is T or G (Keto)

Codons ending in T or C are even if the second letter is A or C (Amino)

Dichotomic classes: Parity, Rumer, Hidden

Actual sequences can be binary coded and real sequences explored by **statistical methods**: **short-range correlations**, **circular cod**es, etc.

Vertebrate mitochondrial genetic code

	U	С	Δ	G	
	UUU Phe	UCU Ser	UAU Tyr	UGU Cys	U
	UUC Phe	UCC Ser	UAC Tyr	UGC Cys	С
U	UUA Leu	UCA Ser	UAA Stop	UGA Trp	Α
	UUG Leu	UCG Ser	UAG Stop	UGG Trp	G
	CUU Leu	CCU Pro	CAU His	CGU Arg	U
	CUC Leu	CCC Pro	CAC His	CGC Arg	С
С	CUA Leu	CCA Pro	CAA GIn	CGA Arg	Α
	CUG Leu	CCG Pro	CAG GIn	CGG Arg	G
	AUU lle	ACU Thr	AAU Asn	AGU Ser	U
-	AUC lle	ACC Thr	AAC Asn	AGC Ser	С
Α	AUA Met	ACA Thr	AAA Lys	AGA Stop	Α
	AUG Met	ACG Thr	AAG Lys	AGG Stop	G
	GUU Val	GCU Ala	GAU Asp	GGU Gly	U
	GUC Val	GCC Ala	GAC Asp	GGC Gly	С
G	GUA Val	GCA Ala	GAA Glu	GGA Gly	Α
	GUG Val	GCG Ala	GAG Glu	GGG Gly	G

Distribution of Degeneracy Vertebrate Mitochondrial												
Degeneracy number of synonymous codons	Number of amino acids sharing this degeneracy											
2	16											
4	8											

Is it possible to describe the degeneracy distribution of the vertebrate mitochondrial genetic code by means of a non-power number representation?

In yellow are evidenced the differences with the standard nuclear genetic code

The 8,8,4,2,1,0 non-power solution for mitochondrial degeneracy

Represented number]	Le	en	gtl	16	5 b	in	ar	y	str	in	gs																
	8	8	4	1	2	1	0	8		8	4	2	1	0		:	8	8	4	2	1	L	0	8	8	4	4	2	1	0						
0	0	0	0)	0	0	0									1	0	0	0	0	()	1								Γ	Dege	nera	cv	Nu	mber
1	0	0	0)	0	1	0										0	0	0	0	1		1								ŀ			•		
2	0	0	0)	1	0	0										0	0	0	1			1									Non-	Powe	er re	prese	ntation
3	0	0	0)	1	1	0									(0	0	0	1	1		1								Ē		2			16
4	0	0	1	L	0	0	0										0	0	1	0)	1								┝		4			10
5	0	0	1	L	0	1	0									(0	0	1	0	1	1	1										4			8
6	0	0	1	L	1	0	0									(0	0	1	1	0)	1								Ē	Mit	ocho	ndr	ial Go	notic
7	0	0	1	l	1	1	0										0	0	1	1	1	L	1									IVIIL	ound			neuc
8	1	0	0)	0	0	0	0)	1	0	0	0	0)		1	0	0	0	0		1	0	1	. (0	0	0	1	┝				<u> </u>	
9	1	0	0)	0	1	0	0		1	0	0	1	0)		1	0	0	0	1		1	0	1	. (0	0	1	1			2			16
10	1	0	0)	1	0	0	0		1	0	1	0	0			1	0	0	1	0		1	0	1	. (0	1	0	1	F		1			8
11	1	0	0)	1	1	0	0)	1	0	1	1	0)		1	0	0	1	1	L	1	0	1	. (0	1	1	1	┝					0
12	1	0	1	L	0	0	0	0		1	1	0	0	0)		1	0	1	0	0)	1	0	1	. 1	1	0	0	1		Eupl	otes	Nuc	lear G	enetic
13	1	0	1	L	0	1	0	0)	1	1	0	1	0)		1	0	1	0	1		1	0	1	. 1	1	0	1	1				Co	de	
14	1	0	1	l	1	0	0	0)	1	1	1	0	0			1	0	1	1			1	0	1	. 1	1	1	0	1	F		1			2
15								0		1	1	1	1	0			1	0	1	1	1		1	0	1	. 1	1	1	1	1	╞					4
16								1		1	0	0	0	0)									1	1	. (0	0	0	1			2			12
17								1		1	0	0	1	0										1	1	. (0	0	1	1	F		3			2
18								1		1	0	1	0	0										1	1	. (0	1	0	1	┝		5			4
19								1		1	0	1	1	0										1	1	. (0	1	1	1			4			8
20								1		1	1	0	0	0)									1	1	. 1	1	0	0	1						
21								1		1	1	0	1	0										1	1	1	1	0	1	1						
22								1		1	1	1	0	0)									1	1	1	1	1	0	1						
23								1		1	1	1	1	0										1	1	. 1	1	1	1	1						

Symmetry of A ←→ G exchange (Mitochondrial Code)

NNA and NNG codify the same amino acid

16 pairs of codons NNA - NNG

				~		•		,		
	<u> </u>)	Ľ	ر. 	ŀ	•		3		
	Phe	w			Тиг	UAU	0s	UGU	U	
1		UUC	Sor	цсс	·y.	UAC	5	UGC	С	
	اما	UUA	~ .	UCA	Stop	UAA	Tm	UGA	Α	
	Leu	UUG		U CG	သမှာ	UAG	ΠP	UGG	G	
		ð		8	His	Q		ß	U	
	Lou	g	Pro		CAC	۸m	80	С		
C	Leu	CUA		CCA	Cin	CAA	Aig	CGA	Α	
		CUG		œG	Gin	CAG		œ	G	
		AUU		ACU	Asn	AAU	Ser	AGU	U	
		AUC	Thr	ACC	A	AAC	3	AGC	С	
	Met	AUA		ACA	Lvs	AAA	Stop	AGA	Α	
	IVEC	AUG		ACG	,-	AAG	Coop	AGG	G	
		GUU		GCU	Asn	gau		GGU	U	
	Val	GUC	Δla	GCC	~~~	GAC	Gv	GGC	С	
G	VCI	GUA	Ala	Ala	GCA	Glu	GAA	Gy	GGA	Α
		GUG		GCG	Gu	GAG		GGG	G	

Common to many mitochondrial versions of the genetic code

Symmetry of A ←→ G exchange (Mitochondrial Code)

NNA and NNG codify the same amino acid

16 pairs of codons NNA - NNG

		l	J	C	5	ļ	7	C	G	
		Dha	w		UCU		UAU	0-	UGU	U
		rile	uc	Sor	UCC	iyi	UAC	Ujs	UGC	С
	U	Lau	AUU	Ser	UCA	Stop	UAA	Tra	UGA	Α
		Leu	UUG		UCG	Stop	UAG	пþ	UGG	G
;			ຒ		ccn	Llic	CAU		ccu	U
	_	Lau	ac	Dm	33		CAC	Area	CCC	С
	С	Leu	CUA	FIO	CCA	Cin	CAA	Alg	CGA	Α
			CUG		CCG	Gin	CAG		CGG	G
		I o	AUU		ACU	Acn	AAU	€~r	AGU	U
	_		AUC	Thr	ACC	ASII	AAC	38	AGC	С
	Α	Met	AUA		ACA	Lve	AAA	Stop	AGA	Α
		IVIEL	AUG		ACG	∟уэ	AAG	Stop	AGG	G
			GUU		GCU	Aen	GAU		GGU	U
		\/al	GUC	۸la	GCC	λομ	GAC	Gly	GGC	С
	G	Va	GUA Ala	GCA	Gu	GAA	Gly	GGA	Α	
			GUG		GCG	Giù	GAG		GGG	G

Common to many mitochondrial versions of the genetic code

Origin of degeneracy in amino acid coding

Hypothesis of reversible ancient tRNAs

S. Nikolajewa. M. Friedel, A. Beyer, and T. Wilhelm, The new classification scheme of the genetic code, its early evolution, and tRNA usage, Journal of Bioinformatics and Computational Biology, 12, 54 (2005) 1-12

Half the Degeneracy of the Mitochondrial Genetic Code

Represented number										
	8	8	4	2	1	8	8	4	2	1
0	0	0	0	0	0					
1	0	0	0	0	1					
2	0	0	0	1	0					
3	0	0	0	1	1					
4	0	0	1	0	0					
5	0	0	1	0	1					
6	0	0	1	1	0					
7	0	0	1	1	1					
8	1	0	0	0	0	0	1	0	0	0
9	1	0	0	0	1	0	1	0	0	1
10	1	0	0	1	0	0	1	0	1	0
11	1	0	0	1	1	0	1	0	1	1
12	1	0	1	0	0	0	1	1	0	0
13	1	0	1	0	1	0	1	1	0	1
14	1	0	1	1	0	0	1	1	1	0
15	1	0	1	1	1	0	1	1	1	1
16						1	1	0	0	0
17						1	1	0	0	1
18						1	1	0	1	0
19						1	1	0	1	1
20						1	1	1	0	0
21						1	1	1	0	1
22						1	1	1	1	0
23						1	1	1	1	1

Half the degeneracy of the genetic code Obtained by excluding the 0 non-power base of the representation

(8, 8, 4, 2, 1)

The Complete Tesserae Representation

Α	Α	Α	Α		Α	Α	U	U		Α	Α	G	G	v	Α	Α	C	C	
U	U	U	U	T	U	U	Α	Α		U	U	C	С	Y	U	U	G	G	Б
С	С	С	С		С	С	G	G	C	С	С	U	U	/ P	С	С	Α	Α	ĸ
G	G	G	G		G	G	С	С		G	G	Α	Α	ĸ	G	G	U	U	
Α	U	U	Α		Α	U	Α	U		Α	U	С	G		Α	U	G	С	
U	Α	Α	U		U	Α	U	Α	I T	U	Α	G	С	р	U	Α	С	G	Y/
С	G	G	С	C	С	G	С	G		С	G	Α	U	ĸ	С	G	U	Α	R
G	С	С	G		G	С	G	С		G	С	U	Α		G	С	Α	U	
Α	G	G	Α		Α	G	С	U		Α	G	Α	G		Α	G	U	С	
U	С	С	U	Y	U	С	G	Α		U	С	U	С	т	U	С	Α	G	
С	U	U	С	D	С	U	Α	G	ĸ	С	U	С	U	1	С	U	G	Α	
G	Α	Α	G	к	G	Α	U	С		G	Α	G	Α		G	Α	С	U	1
Α	С	С	Α		Α	С	G	U	w	Α	С	U	G		Α	С	Α	С	
U	G	G	U	Ъ	U	G	С	Α	Y	U	G	Α	С	C	U	G	U	G	т
С	Α	Α	C	ĸ	С	Α	U	G		С	Α	G	U	C	С	Α	С	Α	
G	U	U	G	1	G	U	Α	С		G	U	С	Α		G	U	G	U	

Group properties of the four symmetric transformations, i.e., I, C, YR and KM Klein 4-group V

Origin of degeneracy in amino acid coding

Degeneracy as plurality of states characterized by the same interaction energy

D.L. Gonzalez, S. Giannerini, and R. Rosa, On the origin of the mitochondrial genetic code: Towards a Unified mathematical framework for the management of genetic information, Nature Precedings, http://dx.doi.org/10.1038/npre.2012.7136.1 (2012)

H. Seligman, Pocketknife tRNA hypothesis: anticodons in mammal mitochondrial tRNA side-arm loops translate proteins? Biosystems (2013)

Origin of the mitochondrial genetic code

ANTITESSEDA										1	1			
		A U C G	AAUUUCCCGG	I I C	A A J U C C G G G	U U A A G G C C	С	AAUUCCGG	G G C C U U A A	Y / R	A U C G	A U C G	C C G G A A U U	- R
AMINO		A U C G	U U A A A U G G C C C G	C C	AUJACGGC	AUUACGGC	Ι	AUUACGGC	C G G C A U U A	R	A U C G	U A G C	G C C G U A A U	Y/ R
ACID		A U C G	GGACCUUUCAAG	Y U / U R G	A G J C J C G U G A	C U G A A G U C	R	AGUCCUGA	AGUCCUGA	I	A U C G	G C L L L L L L L L L L L L L L L L L L	U C A G G A C U	С
COMPLEMENTARY		A U C G	CCAGGUAACUUG	R U	A C J G C A G U	G U C A U G A C	Y / R	ACUGCAGU	U G A C G U C A	С	A U C G	C G A U	A C U G C A G U	I
ANTITESSERA														
Distribution of Degeneracy Vertebrate Mitochondrial	Distril	bution o on-powe	of Degei er syste	nera em	су		D	istrib	ution Te:	of	f De erae	egei	nera	су
Distribution of Degeneracy Vertebrate Mitochondrial	Distril	bution o on-powe 8,8,4	of Deger er syste ,2,1,0	nera em	су		D	istrib	ution Te:	of	f De erae	egei	nera	icy
ANTRESSERADistribution of Degeneracy Vertebrate MitochondrialDegeneracy number of synonymous codonsNumber of amino acids sharing this degeneracy	Distril	bution o on-powe 8,8,4 heracy	of Deger er syste ,2,1,0 # of in	nera em	ers		Di	istrib egen Numb nony tesse	ution Te: eracy er of mous rae		f De erae N an sh de	egei e um ninc arii	ber ber baci ng ti	of ids his
ANTRESSERADistribution of Degeneracy Vertebrate MitochondrialDegeneracy number of synonymous codonsNumber of amino acids sharing this degeneracy216	Distril	bution o on-powe 8,8,4 heracy	of Deger er syste ,2,1,0 # of in	nera em	ers		Di Di Sy	egen Numb nony tesse 2	ution Tes eracy er of mous rae		f De erae N an sh de	egei e ninc arii egei	ber ber baci ng ti hera	of ids his icy

Tesserae Properties

Α	Α	Α	Α		А	Α	U	U		Α	Α	G	G	v	Α	Α	С	С	
U	U	U	U] _T	U	U	Α	À	C	П	U	С	С	Y	U	U	G	G	р
С	С	С	С		С	С	G	G		С	С	U	þ		C	С	Α	Α	к
G	G	G	G		G	G	С	С		G	G	Α	Α	ĸ	G	G	U	U	
Α	U	U	Α		Α	U	Α	U		Α	U	С	G		Α	U	G	С	
U	Α	Α	U		U	Α	U	Α		U	Α	G	С	р	U	Α	С	G	Y/
С	G	G	С		С	G	С	G		С	G	Α	U	ĸ	С	G	U	Α	R
G	С	С	G		G	С	G	C		G	С	U	Α		G	С	Α	U	
Α	G	G	Α		Α	G	С	U		Α	G	Α	G		Α	G	U	С	
U	С	С	U	Y	U	С	G	Α		U	С	U	С	т	U	С	Α	G	C
С	U	U	С	/ р	С	U	Α	G	к	С	U	С	U	1	С	U	G	Α	C
G	Α	Α	G	ĸ	G	Α	U	С	1	G	Α	G	Α		G	Α	С	U	
Α	С	С	Α		Α	С	G	U	w	Α	С	U	G		Α	С	Α	С	
U	G	G	U	П	U	G	С	Α		U	G	Α	С	C	U	G	U	G	т
С	Α	Α	С	ĸ	С	Α	U	G	Г/ Тр	С	Α	G	U	C	С	Α	С	Α	1
G	U	U	G	1	G	U	Α	С	Г	G	U	С	Α		G	U	G	U	

A,A,A,A -> A,A,T,A Point mutation immunity, +1 Frame-shift immunity, Rumer's transformation

Conserved Features of the Mitochondrial Genetic Code

Genetic Code

Non-power Representation

Tesserae (di-dinucleotides)

20-24 May 2014

Publications

"Una Nuova Descrizione Matematica del Codice Genetico" D.L. Gonzalez and M. Zanna, **Systema Naturae, Annali di** Biologia Teorica, V. 5, pp. 219-236, (2003).

"Can the genetic code be mathematically described?", Diego L. Gonzalez, Medical Science Monitor, v.10, n.4, HY11-17 (2004).

"Detecting Structure in Parity Binary Sequences: Error Correction and Detection in DNA", Diego Luis Gonzalez, Simone Giannerini and Rodolfo Rosa, IEEE-EMB Magazine, Special Issue on Communication Theory, Coding Theory and Molecular Biology, pp. 69-81, January/February (2006).

"Error Detection and Correction Codes" D.L. Gonzalez, in "The Codes of Life", chapter 6, Marcello Barbieri Editor, Springer Verlag (2008).

"The Mathematical Structure of the Genetic Code" D.L. Gonzalez, in "**The Codes of Life**", chapter 17, Marcello Barbieri Editor, **Springer Verlag (2008).**

"Strong Short-Range Correlations and Codon Class Dichotomies classes in Coding DNA Sequences", Diego L. Gonzalez, Simone Giannerini and Rodolfo Rosa, **Physical Review E,78, n.5, 08481, (2008).**

"The mathematical structure of the genetic code: a tool for inquiring on the origin of life" Diego L. Gonzalez, S. Giannerini, and R. Rosa, **Rivista di Statistica, Anno LXIX, n. 2-3, pp. 143-158,(2009).**

"Circular codes revisited: a statistical approach" Diego Luis Gonzalez, Simone Giannerini and Rodolfo Rosa, **Journal of Theoretical Biology**, vol. 275, n.1, pp21-28, (2011).

"DNA, circular codes and dichotomic classes: a quasi-crystal framework", Diego Luis Gonzalez, Simone Giannerini and Rodolfo Rosa, **Phil Trans A of the Royal Society**, Beyond Crystals: the dialectic of information and structure, theme issue, **370**, **2987-3006**; doi:10.1098/rsta.2011.0387, (2012).

"On the origin of the mitochondrial genetic code: Towards a unified mathematical framework for the management of genetic information" Gonzalez, Diego Luis, Giannerini, Simone, and Rosa, Rodolfo. Available from Nature Precedings http://dx.doi.org/10.1038/npre.2012.7136.1 (2012)

"Genome characterization through dichotomic classes: an analysis of the whole chromosome 1 of A. Thaliana, Enrico Properzi, Simone Giannerini, Diego L. Gonzalez, and Rodolfo Rosa, **Mathematical Biosciences and Engineering, v. 10, n. 1, pp 199-219, (2013).**